Laplacian eigenvalues of the second power of a graph

被引:8
|
作者
Das, Kinkar Ch. [1 ]
Guo, Ji-Ming [2 ]
机构
[1] Sungkyunkwan Univ, Dept Math, Suwon 440746, South Korea
[2] China Univ Petr, Dept Appl Math, Dongying 257061, Shandong, Peoples R China
关键词
Graph; Laplacian matrix; Laplacian spectral radius; Second largest Laplacian eigenvalue; Diameter; PERFORMANCE GUARANTEES; SPECTRAL-RADIUS; NETWORKS; MATRICES; BOUNDS;
D O I
10.1016/j.disc.2012.12.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The kth power of a graph G, denoted by G(k), is the graph with the same vertex set as G, such that two vertices are adjacent in G(k) if and only if their distance is at most kin G. In this paper, we give bounds on the first two largest Laplacian eigenvalues of the second power of a general graph, and on the second power of a tree. We also give a Nordhaus-Gaddum-type inequality for the Laplacian spectral radius of G(2). (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:626 / 634
页数:9
相关论文
共 50 条
  • [1] On the Second Smallest and the Largest Normalized Laplacian Eigenvalues of a Graph
    Xiao-guo TIAN
    Li-gong WANG
    You LU
    Acta Mathematicae Applicatae Sinica, 2021, 37 (03) : 628 - 644
  • [2] On the Second Smallest and the Largest Normalized Laplacian Eigenvalues of a Graph
    Tian, Xiao-guo
    Wang, Li-gong
    Lu, You
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2021, 37 (03): : 628 - 644
  • [3] The Eigenvalues and Laplacian Eigenvalues of A Graph
    Wang, Haitang
    PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON MATRIX ANALYSIS AND APPLICATIONS, VOL 2, 2009, : 337 - 341
  • [4] On the Second Smallest and the Largest Normalized Laplacian Eigenvalues of a Graph
    Xiao-guo Tian
    Li-gong Wang
    You Lu
    Acta Mathematicae Applicatae Sinica, English Series, 2021, 37 : 628 - 644
  • [5] On the Laplacian eigenvalues of a graph
    Li, JS
    Zhang, XD
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 285 (1-3) : 305 - 307
  • [6] On Laplacian eigenvalues of a graph
    Zhou, B
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2004, 59 (03): : 181 - 184
  • [7] EIGENVALUES OF LAPLACIAN OF A GRAPH
    ANDERSON, WM
    MORLEY, TD
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (01): : A5 - &
  • [8] On the Laplacian eigenvalues of a graph and Laplacian energy
    Pirzada, S.
    Ganie, Hilal A.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 486 : 454 - 468
  • [9] On the least distance eigenvalues of the second power of a graph
    He, Fangguo
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2018, 58 (1-2) : 183 - 192
  • [10] On the least distance eigenvalues of the second power of a graph
    Fangguo He
    Journal of Applied Mathematics and Computing, 2018, 58 : 183 - 192