Laplacian eigenvalues of the second power of a graph

被引:8
|
作者
Das, Kinkar Ch. [1 ]
Guo, Ji-Ming [2 ]
机构
[1] Sungkyunkwan Univ, Dept Math, Suwon 440746, South Korea
[2] China Univ Petr, Dept Appl Math, Dongying 257061, Shandong, Peoples R China
关键词
Graph; Laplacian matrix; Laplacian spectral radius; Second largest Laplacian eigenvalue; Diameter; PERFORMANCE GUARANTEES; SPECTRAL-RADIUS; NETWORKS; MATRICES; BOUNDS;
D O I
10.1016/j.disc.2012.12.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The kth power of a graph G, denoted by G(k), is the graph with the same vertex set as G, such that two vertices are adjacent in G(k) if and only if their distance is at most kin G. In this paper, we give bounds on the first two largest Laplacian eigenvalues of the second power of a general graph, and on the second power of a tree. We also give a Nordhaus-Gaddum-type inequality for the Laplacian spectral radius of G(2). (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:626 / 634
页数:9
相关论文
共 50 条
  • [11] Graph embeddings and Laplacian eigenvalues
    Guattery, S
    Miller, GL
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 21 (03) : 703 - 723
  • [12] On the distribution of Laplacian eigenvalues of a graph
    Ji Ming Guo
    Xiao Li Wu
    Jiong Ming Zhang
    Kun Fu Fang
    Acta Mathematica Sinica, English Series, 2011, 27 : 2259 - 2268
  • [13] BOUNDS FOR LAPLACIAN GRAPH EIGENVALUES
    Maden, A. Dilek
    Buyukkose, Serife
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2012, 15 (03): : 529 - 536
  • [14] A note on Laplacian graph eigenvalues
    Merris, R
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 285 (1-3) : 33 - 35
  • [15] On the Distribution of Laplacian Eigenvalues of a Graph
    Guo, Ji Ming
    Wu, Xiao Li
    Zhang, Jiong Ming
    Fang, Kun Fu
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2011, 27 (11) : 2259 - 2268
  • [17] Laplacian eigenvalues and the excess of a graph
    Rodríguez, JA
    Yebra, JLA
    ARS COMBINATORIA, 2002, 64 : 249 - 258
  • [18] EXTREMAL GRAPH REALIZATIONS AND GRAPH LAPLACIAN EIGENVALUES
    Osting, Braxton
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2023, 37 (03) : 1630 - 1644
  • [19] A relation between the Laplacian and signless Laplacian eigenvalues of a graph
    Saieed Akbari
    Ebrahim Ghorbani
    Jack H. Koolen
    Mohammad Reza Oboudi
    Journal of Algebraic Combinatorics, 2010, 32 : 459 - 464
  • [20] Bounds for the extreme eigenvalues of the laplacian and signless laplacian of a graph
    Kolotilina L.Y.
    Journal of Mathematical Sciences, 2012, 182 (6) : 803 - 813