Laplacian eigenvalues of the second power of a graph

被引:8
|
作者
Das, Kinkar Ch. [1 ]
Guo, Ji-Ming [2 ]
机构
[1] Sungkyunkwan Univ, Dept Math, Suwon 440746, South Korea
[2] China Univ Petr, Dept Appl Math, Dongying 257061, Shandong, Peoples R China
关键词
Graph; Laplacian matrix; Laplacian spectral radius; Second largest Laplacian eigenvalue; Diameter; PERFORMANCE GUARANTEES; SPECTRAL-RADIUS; NETWORKS; MATRICES; BOUNDS;
D O I
10.1016/j.disc.2012.12.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The kth power of a graph G, denoted by G(k), is the graph with the same vertex set as G, such that two vertices are adjacent in G(k) if and only if their distance is at most kin G. In this paper, we give bounds on the first two largest Laplacian eigenvalues of the second power of a general graph, and on the second power of a tree. We also give a Nordhaus-Gaddum-type inequality for the Laplacian spectral radius of G(2). (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:626 / 634
页数:9
相关论文
共 50 条
  • [21] A relation between the Laplacian and signless Laplacian eigenvalues of a graph
    Akbari, Saieed
    Ghorbani, Ebrahim
    Koolen, Jack H.
    Oboudi, Mohammad Reza
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2010, 32 (03) : 459 - 464
  • [22] On a Lower Bound for the Laplacian Eigenvalues of a Graph
    Gary R. W. Greaves
    Akihiro Munemasa
    Anni Peng
    Graphs and Combinatorics, 2017, 33 : 1509 - 1519
  • [23] Upper bounds for the Laplacian graph eigenvalues
    Li, JS
    Pan, YL
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2004, 20 (05) : 803 - 806
  • [24] The largest two Laplacian eigenvalues of a graph
    Das, KC
    LINEAR & MULTILINEAR ALGEBRA, 2004, 52 (06): : 441 - 460
  • [25] On a Lower Bound for the Laplacian Eigenvalues of a Graph
    Greaves, Gary R. W.
    Munemasa, Akihiro
    Peng, Anni
    GRAPHS AND COMBINATORICS, 2017, 33 (06) : 1509 - 1519
  • [26] Lower bounds of the Laplacian graph eigenvalues
    Torgasev, A
    Petrovic, M
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2004, 15 (04): : 589 - 593
  • [27] Graph toughness from Laplacian eigenvalues
    Gu, Xiaofeng
    Haemers, Willem H.
    ALGEBRAIC COMBINATORICS, 2022, 5 (01):
  • [28] On the approximation of Laplacian eigenvalues in graph disaggregation
    Hu, Xiaozhe
    Urschel, John C.
    Zikatanov, Ludmil T.
    LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (09): : 1805 - 1822
  • [29] On the sum of signless Laplacian eigenvalues of a graph
    Ashraf, F.
    Omidi, G. R.
    Tayfeh-Rezaie, B.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (11) : 4539 - 4546
  • [30] On the sum of Laplacian eigenvalues of a signed graph
    Wang, Dijian
    Hou, Yaoping
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 555 : 39 - 52