On the Second Smallest and the Largest Normalized Laplacian Eigenvalues of a Graph

被引:0
|
作者
Xiao-guo TIAN [1 ]
Li-gong WANG [1 ,2 ]
You LU [1 ]
机构
[1] Department of Applied Mathematics, School of Science, Northwestern Polytechnical University
[2] Xi'an-Budapest Joint Research Center for Combinatorics, Northwestern Polytechnical University
基金
中央高校基本科研业务费专项资金资助; 中国国家自然科学基金;
关键词
second smallest normalized Laplacian eigenvalue; normalized Laplacian spectral radius; normalized signless Laplacian spectral radius;
D O I
暂无
中图分类号
O157.5 [图论];
学科分类号
摘要
Let G be a simple connected graph with order n.Let L(G) and Q(G) be the normalized Laplacian and normalized signless Laplacian matrices of G,respectively.Let λ;(G) be the k-th smallest normalized Laplacian eigenvalue of G.Denote by p(A) the spectral radius of the matrix A.In this paper,we study the behaviors of λ;(G) and ρ(L(G)) when the graph is perturbed by three operations.We also study the properties of ρ(L(G)) and X for the connected bipartite graphs,where X is a unit eigenvector of L(G) corresponding toρ(L(G)).Meanwhile we characterize all the simple connected graphs with ρ(L(G))=ρ(Q(G)).
引用
收藏
页码:628 / 644
页数:17
相关论文
共 50 条
  • [1] On the Second Smallest and the Largest Normalized Laplacian Eigenvalues of a Graph
    Tian, Xiao-guo
    Wang, Li-gong
    Lu, You
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2021, 37 (03): : 628 - 644
  • [2] On the Second Smallest and the Largest Normalized Laplacian Eigenvalues of a Graph
    Xiao-guo Tian
    Li-gong Wang
    You Lu
    Acta Mathematicae Applicatae Sinica, English Series, 2021, 37 : 628 - 644
  • [3] A note on the second smallest eigenvalue of the normalized Laplacian of a graph
    Li, Hong-Hai
    Su, Li
    UTILITAS MATHEMATICA, 2015, 98 : 171 - 181
  • [4] The effect on the second smallest eigenvalue of the normalized Laplacian of a graph by grafting edges
    Li, Hong-Hai
    Li, Jiong-Sheng
    Fan, Yi-Zheng
    LINEAR & MULTILINEAR ALGEBRA, 2008, 56 (06): : 627 - 638
  • [5] The largest two Laplacian eigenvalues of a graph
    Das, KC
    LINEAR & MULTILINEAR ALGEBRA, 2004, 52 (06): : 441 - 460
  • [6] On the second largest Laplacian eigenvalues of graphs
    Li, Jianxi
    Guo, Ji-Ming
    Shiu, Wai Chee
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (05) : 2438 - 2446
  • [7] On the second largest normalized Laplacian eigenvalue of graphs
    Sun, Shaowei
    Das, Kinkar Ch.
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 348 : 531 - 541
  • [8] Laplacian eigenvalues of the second power of a graph
    Das, Kinkar Ch.
    Guo, Ji-Ming
    DISCRETE MATHEMATICS, 2013, 313 (05) : 626 - 634
  • [9] The second smallest normalized Laplacian eigenvalue of unicyclic graphs
    Guo, Ji-Ming
    Liu, Enying
    Li, Jianxi
    Shiu, Wai Chee
    COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (05):
  • [10] Bounding the sum of powers of normalized Laplacian eigenvalues of a graph
    Li, Jianxi
    Guo, Ji-Ming
    Shiu, Wai Chee
    Altindag, S. Burcu Bozkurt
    Bozkurt, Durmus
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 324 : 82 - 92