On the Second Smallest and the Largest Normalized Laplacian Eigenvalues of a Graph

被引:0
|
作者
Xiao-guo TIAN [1 ]
Li-gong WANG [1 ,2 ]
You LU [1 ]
机构
[1] Department of Applied Mathematics, School of Science, Northwestern Polytechnical University
[2] Xi'an-Budapest Joint Research Center for Combinatorics, Northwestern Polytechnical University
基金
中央高校基本科研业务费专项资金资助; 中国国家自然科学基金;
关键词
second smallest normalized Laplacian eigenvalue; normalized Laplacian spectral radius; normalized signless Laplacian spectral radius;
D O I
暂无
中图分类号
O157.5 [图论];
学科分类号
摘要
Let G be a simple connected graph with order n.Let L(G) and Q(G) be the normalized Laplacian and normalized signless Laplacian matrices of G,respectively.Let λ;(G) be the k-th smallest normalized Laplacian eigenvalue of G.Denote by p(A) the spectral radius of the matrix A.In this paper,we study the behaviors of λ;(G) and ρ(L(G)) when the graph is perturbed by three operations.We also study the properties of ρ(L(G)) and X for the connected bipartite graphs,where X is a unit eigenvector of L(G) corresponding toρ(L(G)).Meanwhile we characterize all the simple connected graphs with ρ(L(G))=ρ(Q(G)).
引用
收藏
页码:628 / 644
页数:17
相关论文
共 50 条
  • [41] Normalized Laplacian Eigenvalues and Energy of Trees
    Das, Kinkar Ch.
    Sun, Shaowei
    TAIWANESE JOURNAL OF MATHEMATICS, 2016, 20 (03): : 491 - 507
  • [42] Ordering Quasi-Tree Graphs by the Second Largest Signless Laplacian Eigenvalues
    Zhen LIN
    Shuguang GUO
    Lianying MIAO
    JournalofMathematicalResearchwithApplications, 2020, 40 (05) : 453 - 466
  • [43] The trees with the second smallest normalized Laplacian eigenvalue at least 1-√3/2
    Tian, Xiaoguo
    Wang, Ligong
    DISCRETE APPLIED MATHEMATICS, 2017, 220 : 118 - 133
  • [44] Exploring normalized distance Laplacian eigenvalues of the zero-divisor graph of ring Zn
    Rehman, Nadeem Ur
    Nazim
    Nazim, Mohd
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2024, 73 (02) : 515 - 526
  • [45] A remark on Normalized Laplacian eigenvalues of signed graph (vol 17, pg 75, 2021)
    Prashanth, B.
    Naik, K. Nagendra
    Salestina, R. M.
    JOURNAL OF APPLIED MATHEMATICS STATISTICS AND INFORMATICS, 2022, 18 (01) : 109 - 124
  • [46] Graph embeddings and Laplacian eigenvalues
    Guattery, S
    Miller, GL
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 21 (03) : 703 - 723
  • [47] On the distribution of Laplacian eigenvalues of a graph
    Ji Ming Guo
    Xiao Li Wu
    Jiong Ming Zhang
    Kun Fu Fang
    Acta Mathematica Sinica, English Series, 2011, 27 : 2259 - 2268
  • [48] BOUNDS FOR LAPLACIAN GRAPH EIGENVALUES
    Maden, A. Dilek
    Buyukkose, Serife
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2012, 15 (03): : 529 - 536
  • [49] A note on Laplacian graph eigenvalues
    Merris, R
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 285 (1-3) : 33 - 35
  • [50] On the Distribution of Laplacian Eigenvalues of a Graph
    Guo, Ji Ming
    Wu, Xiao Li
    Zhang, Jiong Ming
    Fang, Kun Fu
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2011, 27 (11) : 2259 - 2268