On double Hurwitz numbers with completed cycles

被引:29
|
作者
Shadrin, S. [1 ]
Spitz, L. [1 ]
Zvonkine, D. [2 ]
机构
[1] Univ Amsterdam, Korteweg de Vries Inst Math, NL-1090 GE Amsterdam, Netherlands
[2] Stanford Univ, Dept Math, Stanford, CA 94305 USA
关键词
TRANSITIVE FACTORIZATIONS; GEOMETRY; CURVES;
D O I
10.1112/jlms/jds010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we collect a number of facts about double Hurwitz numbers, where the simple branch points are replaced by their more general analogues: completed (r+1)-cycles. In particular, we give a geometric interpretation of these generalized Hurwitz numbers and derive a cut-and-join operator for completed (r+1)-cycles. We also prove a strong piecewise polynomiality property in the sense of Goulden-Jackson-Vakil. In addition, we propose a conjectural ELSV/GJV-type formula, that is, an expression in terms of some intrinsic combinatorial constants that might be related to the intersection theory of some analogues of the moduli space of curves. The structure of these conjectural 'intersection numbers' is discussed in detail.
引用
收藏
页码:407 / 432
页数:26
相关论文
共 50 条
  • [41] Combinatorics of tropical Hurwitz cycles
    Simon Hampe
    Journal of Algebraic Combinatorics, 2015, 42 : 1027 - 1058
  • [42] Multispecies Weighted Hurwitz Numbers
    Harnad, J.
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2015, 11
  • [43] A square root of Hurwitz numbers
    Lee, Junho
    MANUSCRIPTA MATHEMATICA, 2020, 162 (1-2) : 99 - 113
  • [44] Monotone Orbifold Hurwitz Numbers
    Do N.
    Karev M.
    Journal of Mathematical Sciences, 2017, 226 (5) : 568 - 587
  • [45] Around spin Hurwitz numbers
    Mironov, A. D.
    Morozov, A.
    Natanzon, S. M.
    Orlov, A. Yu
    LETTERS IN MATHEMATICAL PHYSICS, 2021, 111 (05)
  • [46] Hurwitz numbers for real polynomials
    Itenberg, Ilia
    Zvonkine, Dimitri
    COMMENTARII MATHEMATICI HELVETICI, 2018, 93 (03) : 441 - 474
  • [47] Simple Hurwitz numbers of a disk
    Natanzon, S. M.
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2010, 44 (01) : 36 - 47
  • [48] On Hurwitz numbers and Hedge integrals
    Ekedahl, T
    Lando, S
    Shapiro, M
    Vainshtein, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 328 (12): : 1175 - 1180
  • [49] BKP and projective Hurwitz numbers
    Natanzon, Sergey M.
    Orlov, Aleksandr Yu.
    LETTERS IN MATHEMATICAL PHYSICS, 2017, 107 (06) : 1065 - 1109
  • [50] A square root of Hurwitz numbers
    Junho Lee
    manuscripta mathematica, 2020, 162 : 99 - 113