On double Hurwitz numbers with completed cycles

被引:29
|
作者
Shadrin, S. [1 ]
Spitz, L. [1 ]
Zvonkine, D. [2 ]
机构
[1] Univ Amsterdam, Korteweg de Vries Inst Math, NL-1090 GE Amsterdam, Netherlands
[2] Stanford Univ, Dept Math, Stanford, CA 94305 USA
关键词
TRANSITIVE FACTORIZATIONS; GEOMETRY; CURVES;
D O I
10.1112/jlms/jds010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we collect a number of facts about double Hurwitz numbers, where the simple branch points are replaced by their more general analogues: completed (r+1)-cycles. In particular, we give a geometric interpretation of these generalized Hurwitz numbers and derive a cut-and-join operator for completed (r+1)-cycles. We also prove a strong piecewise polynomiality property in the sense of Goulden-Jackson-Vakil. In addition, we propose a conjectural ELSV/GJV-type formula, that is, an expression in terms of some intrinsic combinatorial constants that might be related to the intersection theory of some analogues of the moduli space of curves. The structure of these conjectural 'intersection numbers' is discussed in detail.
引用
收藏
页码:407 / 432
页数:26
相关论文
共 50 条
  • [21] Hurwitz numbers for generalised polynomials and two-pointed ramification cycles
    Shadrin, SV
    RUSSIAN MATHEMATICAL SURVEYS, 2003, 58 (01) : 195 - 196
  • [22] On the Goulden-Jackson-Vakil conjecture for double Hurwitz numbers
    Do, Norman
    Lewanski, Danilo
    ADVANCES IN MATHEMATICS, 2022, 403
  • [23] Double Hurwitz numbers: polynomiality, topological recursion and intersection theory
    Gaëtan Borot
    Norman Do
    Maksim Karev
    Danilo Lewański
    Ellena Moskovsky
    Mathematische Annalen, 2023, 387 : 179 - 243
  • [24] Toda Equations and Piecewise Polynomiality for Mixed Double Hurwitz Numbers
    Goulden, I. P.
    Guay-Paquet, Mathieu
    Novak, Jonathan
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2016, 12
  • [25] Double Hurwitz numbers: polynomiality, topological recursion and intersection theory
    Borot, Gaetan
    Do, Norman
    Karev, Maksim
    Lewanski, Danilo
    Moskovsky, Ellena
    MATHEMATISCHE ANNALEN, 2023, 387 (1-2) : 179 - 243
  • [26] Polynomiality, wall crossings and tropical geometry of rational double Hurwitz cycles
    Bertram, Aaron
    Cavalieri, Renzo
    Markwig, Hannah
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2013, 120 (07) : 1604 - 1631
  • [27] NOTE ON HURWITZ NUMBERS
    RIEGER, GJ
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1977, 296 : 212 - 220
  • [28] The Combinatorics of Real Double Hurwitz Numbers with Real Positive Branch Points
    Guay-Paquet, Mathieu
    Markwig, Hannah
    Rau, Johannes
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2016, 2016 (01) : 258 - 293
  • [29] Tropical Hurwitz numbers
    Cavalieri, Renzo
    Johnson, Paul
    Markwig, Hannah
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2010, 32 (02) : 241 - 265
  • [30] PRUNED HURWITZ NUMBERS
    Do, Norman
    Norbury, Paul
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (05) : 3053 - 3084