On double Hurwitz numbers with completed cycles

被引:29
|
作者
Shadrin, S. [1 ]
Spitz, L. [1 ]
Zvonkine, D. [2 ]
机构
[1] Univ Amsterdam, Korteweg de Vries Inst Math, NL-1090 GE Amsterdam, Netherlands
[2] Stanford Univ, Dept Math, Stanford, CA 94305 USA
关键词
TRANSITIVE FACTORIZATIONS; GEOMETRY; CURVES;
D O I
10.1112/jlms/jds010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we collect a number of facts about double Hurwitz numbers, where the simple branch points are replaced by their more general analogues: completed (r+1)-cycles. In particular, we give a geometric interpretation of these generalized Hurwitz numbers and derive a cut-and-join operator for completed (r+1)-cycles. We also prove a strong piecewise polynomiality property in the sense of Goulden-Jackson-Vakil. In addition, we propose a conjectural ELSV/GJV-type formula, that is, an expression in terms of some intrinsic combinatorial constants that might be related to the intersection theory of some analogues of the moduli space of curves. The structure of these conjectural 'intersection numbers' is discussed in detail.
引用
收藏
页码:407 / 432
页数:26
相关论文
共 50 条
  • [31] Tropical Hurwitz numbers
    Renzo Cavalieri
    Paul Johnson
    Hannah Markwig
    Journal of Algebraic Combinatorics, 2010, 32 : 241 - 265
  • [32] The spectral curve and the Schrodinger equation of double Hurwitz numbers and higher spin structures
    Mulase, M.
    Shadrin, S.
    Spitz, L.
    COMMUNICATIONS IN NUMBER THEORY AND PHYSICS, 2013, 7 (01) : 125 - 143
  • [33] Combinatorics of tropical Hurwitz cycles
    Hampe, Simon
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2015, 42 (04) : 1027 - 1058
  • [34] Lozenge Tilings and Hurwitz Numbers
    Jonathan Novak
    Journal of Statistical Physics, 2015, 161 : 509 - 517
  • [35] Tropical real Hurwitz numbers
    Hannah Markwig
    Johannes Rau
    Mathematische Zeitschrift, 2015, 281 : 501 - 522
  • [36] Toda equations for Hurwitz numbers
    Okounkov, A
    MATHEMATICAL RESEARCH LETTERS, 2000, 7 (04) : 447 - 453
  • [37] Around spin Hurwitz numbers
    A. D. Mironov
    A. Morozov
    S. M. Natanzon
    A. Yu. Orlov
    Letters in Mathematical Physics, 2021, 111
  • [38] Tropical real Hurwitz numbers
    Markwig, Hannah
    Rau, Johannes
    MATHEMATISCHE ZEITSCHRIFT, 2015, 281 (1-2) : 501 - 522
  • [39] Tropical Open Hurwitz Numbers
    Bertrand, Benoit
    Brugalle, Erwan
    Mikhalkin, Grigory
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2011, 125 : 157 - 171
  • [40] Generating weighted Hurwitz numbers
    Bertola, M.
    Harnad, J.
    Runov, B.
    JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (01)