A note on practical bubbles for advection-diffusion problems

被引:2
|
作者
Yue, XY [1 ]
机构
[1] Suzhou Univ, Dept Math, Suzhou 215006, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math, Beijing 100080, Peoples R China
关键词
D O I
10.1007/s100920200008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note, we show that, in the one-dimensional case, as an approximation to residual-free bubbles (RFB), certain practical bubbles can be applied to obtain a scheme which is uniformly convergent with respect to small viscosity in the energy norm for advection-diffusion problems.
引用
收藏
页码:189 / 200
页数:12
相关论文
共 50 条
  • [41] Numerical experiments for advection-diffusion problems in a channel with a 180° bend
    Clavero, C
    Miller, JJH
    O'Riordan, E
    Shishkin, GI
    APPLIED MATHEMATICS AND COMPUTATION, 2001, 118 (2-3) : 223 - 246
  • [42] Hybridized formulations of flux reconstruction schemes for advection-diffusion problems
    Pereira, Carlos A.
    Vermeire, Brian C.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 516
  • [43] APPLICATION OF AN OPERATOR-SPLITTING ALGORITHM FOR ADVECTION-DIFFUSION PROBLEMS
    MURALIDHAR, K
    VERGHESE, M
    PILLAI, KM
    NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 1993, 23 (01) : 99 - 113
  • [44] On the Numerical Solution of Advection-Diffusion Problems with Singular Source Terms
    Soykan, Ezgi
    Ahlatcioglu, Mehmet
    Ashyraliyev, Maksat
    INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM 2018), 2018, 1997
  • [45] Basis of splines associated with singularly perturbed advection-diffusion problems
    Bosner, Tina
    MATHEMATICAL COMMUNICATIONS, 2010, 15 (01) : 1 - 12
  • [46] A BALANCING DOMAIN DECOMPOSITION METHOD BY CONSTRAINTS FOR ADVECTION-DIFFUSION PROBLEMS
    Tu, Xuemin
    Li, Jing
    COMMUNICATIONS IN APPLIED MATHEMATICS AND COMPUTATIONAL SCIENCE, 2008, 3 (01) : 25 - 60
  • [47] New complex variable meshless method for advection-diffusion problems
    Wang Jian-Fei
    Cheng Yu-Min
    CHINESE PHYSICS B, 2013, 22 (03)
  • [48] CONSTRAINED LOCAL APPROXIMATE IDEAL RESTRICTION FOR ADVECTION-DIFFUSION PROBLEMS
    Ali, Ahsan
    Brannick, James J.
    Kahl, Karsten
    Krzysik, Oliver A.
    Schroder, Jacob B.
    Southworth, Ben S.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2024, 46 (05): : S96 - S122
  • [49] FETI domain decomposition methods for scalar advection-diffusion problems
    Toselli, A
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2001, 190 (43-44) : 5759 - 5776
  • [50] Stabilized FEM with shock-capturing for advection-diffusion problems
    Knopp, T
    Lube, G
    Rapin, G
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2001, 81 : S767 - S768