A note on practical bubbles for advection-diffusion problems

被引:2
|
作者
Yue, XY [1 ]
机构
[1] Suzhou Univ, Dept Math, Suzhou 215006, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math, Beijing 100080, Peoples R China
关键词
D O I
10.1007/s100920200008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note, we show that, in the one-dimensional case, as an approximation to residual-free bubbles (RFB), certain practical bubbles can be applied to obtain a scheme which is uniformly convergent with respect to small viscosity in the energy norm for advection-diffusion problems.
引用
收藏
页码:189 / 200
页数:12
相关论文
共 50 条
  • [21] Numerical stability of the BEM foe advection-diffusion problems
    Peratta, A
    Popov, V
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2004, 20 (05) : 675 - 702
  • [22] A Stable Domain Decomposition Technique for Advection-Diffusion Problems
    Alund, Oskar
    Nordstrom, Jan
    JOURNAL OF SCIENTIFIC COMPUTING, 2018, 77 (02) : 755 - 774
  • [23] Construction of a peridynamic model for transient advection-diffusion problems
    Zhao, Jiangming
    Chen, Ziguang
    Mehrmashhadi, Javad
    Bobaru, Florin
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 126 : 1253 - 1266
  • [24] Discontinuous Galerkin methods for magnetic advection-diffusion problems
    Wang, Jindong
    Wu, Shuonan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 174 : 43 - 54
  • [25] Deformation Formulas and Inverse Problems for Advection-diffusion Equations
    Nakagiri, Shin-ichi
    SIMULATION AND MODELING RELATED TO COMPUTATIONAL SCIENCE AND ROBOTICS TECHNOLOGY, 2012, 37 : 61 - 78
  • [26] Streamline design of stability parameters for advection-diffusion problems
    Harari, I
    Franca, LP
    Oliveira, SP
    JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 171 (01) : 115 - 131
  • [27] Slender-body approximations for advection-diffusion problems
    Schnitzer, Ory
    JOURNAL OF FLUID MECHANICS, 2015, 768
  • [28] Acceleration of a domain decomposition method for advection-diffusion problems
    Lube, G
    Knopp, T
    Rapin, G
    DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING, 2005, 40 : 267 - 274
  • [29] A multigrid preconditioner for stabilised discretisations of advection-diffusion problems
    Ramage, A
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 110 (01) : 187 - 203
  • [30] Solution of the linear and nonlinear advection-diffusion problems on a sphere
    Skiba, Yuri N.
    Cruz-Rodriguez, Roberto C.
    Filatov, Denis M.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2020, 36 (06) : 1922 - 1937