Hybridized formulations of flux reconstruction schemes for advection-diffusion problems

被引:0
|
作者
Pereira, Carlos A. [1 ]
Vermeire, Brian C. [1 ]
机构
[1] Concordia Univ, Dept Mech Ind & Aerosp Engn, Montreal, PQ, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Flux reconstruction; High-order methods; Discontinuous Galerkin; Hybridizable discontinuous Galerkin; DISCONTINUOUS GALERKIN METHOD; FINITE-ELEMENT-METHOD; QUADRILATERAL ELEMENTS; CONSERVATION-LAWS; STABILITY; SUPERCONVERGENCE;
D O I
10.1016/j.jcp.2024.113364
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present the hybridization of flux reconstruction methods for advection-diffusion problems. Hybridization introduces a new variable into the problem so that it can be reduced via static condensation. This allows the solution of implicit discretizations to be done more efficiently. We derive an energy statement from a stability analysis considering a range of correction functions on hybridized and embedded flux reconstruction schemes. Then, we establish connections to standard formulations. We devise a post-processing scheme that leverages existing flux reconstruction operators to enhance accuracy for diffusion-dominated problems. Results show that the implicit convergence of these methods for advection-diffusion problems can result in performance benefits of over an order of magnitude. In addition, we observe that the superconvergence property of hybridized methods can be extended to the family of FR schemes for a range of correction functions.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] Energy stable flux reconstruction schemes for advection-diffusion problems
    Castonguay, P.
    Williams, D. M.
    Vincent, P. E.
    Jameson, A.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2013, 267 : 400 - 417
  • [2] Energy Stable Flux Reconstruction Schemes for Advection-Diffusion Problems on Tetrahedra
    Williams, D. M.
    Jameson, A.
    JOURNAL OF SCIENTIFIC COMPUTING, 2014, 59 (03) : 721 - 759
  • [4] Energy stable flux reconstruction schemes for advection-diffusion problems on triangles
    Williams, D. M.
    Castonguay, P.
    Vincent, P. E.
    Jameson, A.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 250 : 53 - 76
  • [5] A Direct Flux Reconstruction Scheme for Advection-Diffusion Problems on Triangular Grids
    Romero, J.
    Witherden, F. D.
    Jameson, A.
    JOURNAL OF SCIENTIFIC COMPUTING, 2017, 73 (2-3) : 1115 - 1144
  • [6] Energy Stable Flux Reconstruction Schemes for Advection–Diffusion Problems on Tetrahedra
    D. M. Williams
    A. Jameson
    Journal of Scientific Computing, 2014, 59 : 721 - 759
  • [7] Residual distribution schemes for advection and advection-diffusion problems on quadrilateral cells
    De Palma, P.
    Pascazio, G.
    Rubino, D. T.
    Napolitano, M.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 218 (01) : 159 - 199
  • [8] Erratum to: Energy Stable Flux Reconstruction Schemes for Advection–Diffusion Problems on Tetrahedra
    D. M. Williams
    A. Jameson
    Journal of Scientific Computing, 2014, 59 (3) : 760 - 760
  • [9] Application of Nonlinear Monotone Finite Volume Schemes to Advection-Diffusion Problems
    Vassilevski, Yuri
    Danilov, Alexander
    Kapyrin, Ivan
    Nikitin, Kirill
    FINITE VOLUMES FOR COMPLEX APPLICATIONS VI: PROBLEMS & PERSPECTIVES, VOLS 1 AND 2, 2011, 4 : 761 - 769
  • [10] Space-time domain decomposition for advection-diffusion problems in mixed formulations
    Thi-Thao-Phuong Hoang
    Japhet, Caroline
    Kern, Michel
    Roberts, Jean E.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2017, 137 : 366 - 389