Hybridized formulations of flux reconstruction schemes for advection-diffusion problems

被引:0
|
作者
Pereira, Carlos A. [1 ]
Vermeire, Brian C. [1 ]
机构
[1] Concordia Univ, Dept Mech Ind & Aerosp Engn, Montreal, PQ, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Flux reconstruction; High-order methods; Discontinuous Galerkin; Hybridizable discontinuous Galerkin; DISCONTINUOUS GALERKIN METHOD; FINITE-ELEMENT-METHOD; QUADRILATERAL ELEMENTS; CONSERVATION-LAWS; STABILITY; SUPERCONVERGENCE;
D O I
10.1016/j.jcp.2024.113364
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present the hybridization of flux reconstruction methods for advection-diffusion problems. Hybridization introduces a new variable into the problem so that it can be reduced via static condensation. This allows the solution of implicit discretizations to be done more efficiently. We derive an energy statement from a stability analysis considering a range of correction functions on hybridized and embedded flux reconstruction schemes. Then, we establish connections to standard formulations. We devise a post-processing scheme that leverages existing flux reconstruction operators to enhance accuracy for diffusion-dominated problems. Results show that the implicit convergence of these methods for advection-diffusion problems can result in performance benefits of over an order of magnitude. In addition, we observe that the superconvergence property of hybridized methods can be extended to the family of FR schemes for a range of correction functions.
引用
收藏
页数:26
相关论文
共 50 条
  • [41] A generalised complete flux scheme for anisotropic advection-diffusion equations
    Cheng, Hanz Martin
    Boonkkamp, Jan ten Thije
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2021, 47 (02)
  • [42] Streamline design of stability parameters for advection-diffusion problems
    Harari, I
    Franca, LP
    Oliveira, SP
    JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 171 (01) : 115 - 131
  • [43] Slender-body approximations for advection-diffusion problems
    Schnitzer, Ory
    JOURNAL OF FLUID MECHANICS, 2015, 768
  • [44] Acceleration of a domain decomposition method for advection-diffusion problems
    Lube, G
    Knopp, T
    Rapin, G
    DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING, 2005, 40 : 267 - 274
  • [45] A multigrid preconditioner for stabilised discretisations of advection-diffusion problems
    Ramage, A
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 110 (01) : 187 - 203
  • [46] Solution of the linear and nonlinear advection-diffusion problems on a sphere
    Skiba, Yuri N.
    Cruz-Rodriguez, Roberto C.
    Filatov, Denis M.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2020, 36 (06) : 1922 - 1937
  • [47] BDDC algorithms for advection-diffusion problems with HDG discretizations
    Tu, Xuemin
    Zhang, Jinjin
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 101 : 74 - 106
  • [48] A Python']Python Framework for Solving Advection-Diffusion Problems
    Dedner, Andreas
    Klofkorn, Robert
    FINITE VOLUMES FOR COMPLEX APPLICATIONS IX-METHODS, THEORETICAL ASPECTS, EXAMPLES, FVCA 9, 2020, 323 : 695 - 703
  • [49] p-adaptive hybridized flux reconstruction schemes
    Pereira, Carlos A.
    Vermeire, Brian C.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 514
  • [50] HIGH-ORDER PRESERVING RESIDUAL DISTRIBUTION SCHEMES FOR ADVECTION-DIFFUSION SCALAR PROBLEMS ON ARBITRARY GRIDS
    Abgrall, R.
    De Santis, D.
    Ricchiuto, M.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (03): : A955 - A983