Hybridized formulations of flux reconstruction schemes for advection-diffusion problems

被引:0
|
作者
Pereira, Carlos A. [1 ]
Vermeire, Brian C. [1 ]
机构
[1] Concordia Univ, Dept Mech Ind & Aerosp Engn, Montreal, PQ, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Flux reconstruction; High-order methods; Discontinuous Galerkin; Hybridizable discontinuous Galerkin; DISCONTINUOUS GALERKIN METHOD; FINITE-ELEMENT-METHOD; QUADRILATERAL ELEMENTS; CONSERVATION-LAWS; STABILITY; SUPERCONVERGENCE;
D O I
10.1016/j.jcp.2024.113364
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present the hybridization of flux reconstruction methods for advection-diffusion problems. Hybridization introduces a new variable into the problem so that it can be reduced via static condensation. This allows the solution of implicit discretizations to be done more efficiently. We derive an energy statement from a stability analysis considering a range of correction functions on hybridized and embedded flux reconstruction schemes. Then, we establish connections to standard formulations. We devise a post-processing scheme that leverages existing flux reconstruction operators to enhance accuracy for diffusion-dominated problems. Results show that the implicit convergence of these methods for advection-diffusion problems can result in performance benefits of over an order of magnitude. In addition, we observe that the superconvergence property of hybridized methods can be extended to the family of FR schemes for a range of correction functions.
引用
收藏
页数:26
相关论文
共 50 条
  • [31] A numerical analysis of the nodal Discontinuous Galerkin scheme via Flux Reconstruction for the advection-diffusion equation
    Watkins, Jerry
    Asthana, Kartikey
    Jameson, Antony
    COMPUTERS & FLUIDS, 2016, 139 : 233 - 247
  • [32] Multiple anisotropic collisions for advection-diffusion Lattice Boltzmann schemes
    Ginzburg, Irina
    ADVANCES IN WATER RESOURCES, 2013, 51 : 381 - 404
  • [33] Plain Galerkin schemes that work well for the advection-diffusion problem
    Bottasso, CL
    Detomi, D
    COMPUTATIONAL FLUID AND SOLID MECHANICS 2003, VOLS 1 AND 2, PROCEEDINGS, 2003, : 853 - 857
  • [34] Exponentially fitted IMEX methods for advection-diffusion problems
    Cardone, Angelamaria
    D'Ambrosio, Raffaele
    Paternoster, Beatrice
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 316 : 100 - 108
  • [35] A generalised complete flux scheme for anisotropic advection-diffusion equations
    Hanz Martin Cheng
    Jan ten Thije Boonkkamp
    Advances in Computational Mathematics, 2021, 47
  • [36] Numerical stability of the BEM foe advection-diffusion problems
    Peratta, A
    Popov, V
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2004, 20 (05) : 675 - 702
  • [37] A Stable Domain Decomposition Technique for Advection-Diffusion Problems
    Alund, Oskar
    Nordstrom, Jan
    JOURNAL OF SCIENTIFIC COMPUTING, 2018, 77 (02) : 755 - 774
  • [38] Construction of a peridynamic model for transient advection-diffusion problems
    Zhao, Jiangming
    Chen, Ziguang
    Mehrmashhadi, Javad
    Bobaru, Florin
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 126 : 1253 - 1266
  • [39] Discontinuous Galerkin methods for magnetic advection-diffusion problems
    Wang, Jindong
    Wu, Shuonan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 174 : 43 - 54
  • [40] Deformation Formulas and Inverse Problems for Advection-diffusion Equations
    Nakagiri, Shin-ichi
    SIMULATION AND MODELING RELATED TO COMPUTATIONAL SCIENCE AND ROBOTICS TECHNOLOGY, 2012, 37 : 61 - 78