Concatenated zigzag Hadamard codes

被引:26
|
作者
Leung, WKR [1 ]
Yue, GS
Ping, L
Wang, XD
机构
[1] Huawei Technol Co Ltd, Res Dept PSMT, Shenzhen 518129, Peoples R China
[2] NEC Labs Amer Inc, Princeton, NJ 08540 USA
[3] City Univ Hong Kong, Dept Elect Engn, Kowloon, Hong Kong, Peoples R China
[4] Columbia Univ, Dept Elect Engn, New York, NY 10027 USA
基金
美国国家科学基金会;
关键词
extrinsic mutual information transfer (EXIT) chart; Hadamard codes; low-complexity decoding; low rate; parallel concatenation; union bound; zigzag codes;
D O I
10.1109/TIT.2006.871613
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this correspondence, we introduce a new class of low-rate error correction codes called zigzag Hadamard (ZH) codes and their concatenation schemes. Each member of this class of codes is specified by a highly structured zigzag graph with each segment being a Hadamard codeword. The ZH codes enjoy extremely simple encoding and very low-complexity soft-input-soft-output (SISO) decoding based on a posteriori probability (APP) fast Hadamard transform (FHT) technique. We present an asymptotic performance analysis of the proposed concatenated ZH codes using the extrinsic mutual information transfer (EXIT) chart for infinite-length codes. We also provide a union bound analysis of the error performance for finite-length codes. Furthermore, the concatenated ZH codes are shown to be a good class of codes in the low-rate region. Specifically, a rate-0.0107 concatenated code with three ZH components and an inter-leaver size of 65536 can achieve the bit error rate (BER) performance of 10(-5) at -1.15 dB, which is only 0.44 dB away from the ultimate Shannon limit. The proposed concatenated ZH codes offer similar performance as another class of low-rate codes-the turbo-Hadamard codes, and better performance than superorthogonal turbo codes, with much lower encoding and decoding complexities.
引用
收藏
页码:1711 / 1723
页数:13
相关论文
共 50 条
  • [41] Joint Source-Channel-Network Decoding and Blind Estimation of Correlated Sensors Using Concatenated Zigzag Codes
    Del Ser, Javier
    Mendicute, Mikel
    Crespo, Pedro M.
    Gil-Lopez, Sergio
    Olabarrieta, Ignacio
    AD-HOC, MOBILE AND WIRELESS NETWORKS, PROCEEDINGS, 2009, 5793 : 30 - +
  • [42] CYCLIC CONCATENATED CODES WITH CONSTACYCLIC OUTER CODES
    JENSEN, JM
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1992, 38 (03) : 950 - 959
  • [43] Product codes and parallel concatenated product codes
    Huang, Tina D. -H.
    Chang, Chi-Yuan
    Zheng, Yan-Xiu
    Su, Yu T.
    2007 IEEE WIRELESS COMMUNICATIONS & NETWORKING CONFERENCE, VOLS 1-9, 2007, : 94 - 99
  • [44] Decoding of concatenated codes with interleaved outer codes
    Justesen, J
    Thommesen, C
    Hoholdt, T
    2004 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2004, : 329 - 329
  • [45] Concatenated Prime Codes and Quadratic Prime Codes
    Liu Qingge
    Yang Dongkai
    Zhang Qishan
    2008 11TH IEEE SINGAPORE INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS (ICCS), VOLS 1-3, 2008, : 241 - 245
  • [46] ASYMPTOTIC CAPABILITIES OF CONCATENATED CODES AND ITERATED CODES
    NISHIJIMA, T
    HIRASAWA, S
    ELECTRONICS AND COMMUNICATIONS IN JAPAN PART III-FUNDAMENTAL ELECTRONIC SCIENCE, 1995, 78 (02): : 42 - 52
  • [47] Decoding concatenated codes with convolutional inner codes
    Zyablov, V.V.
    Yustesen, J.
    Dettmar, U.
    Zorger, U.
    Problemy Peredachi Informatsii, 1994, 30 (02): : 3 - 9
  • [48] From prime codes to concatenated prime codes
    Liu, Qing-Ge
    Shao, Ding-Rong
    Li, Shu-Jian
    Tongxin Xuebao/Journal on Communications, 2007, 28 (04): : 123 - 127
  • [49] Symmetry and concatenated quantum codes
    Jaeger, G
    QUANTUM INFORMATION AND COMPUTATION III, 2005, 5815 : 27 - 31
  • [50] FORMBY,GD - CONCATENATED CODES
    STOREY, C
    CONTROL, 1967, 11 (112): : 511 - &