Concatenated zigzag Hadamard codes

被引:26
|
作者
Leung, WKR [1 ]
Yue, GS
Ping, L
Wang, XD
机构
[1] Huawei Technol Co Ltd, Res Dept PSMT, Shenzhen 518129, Peoples R China
[2] NEC Labs Amer Inc, Princeton, NJ 08540 USA
[3] City Univ Hong Kong, Dept Elect Engn, Kowloon, Hong Kong, Peoples R China
[4] Columbia Univ, Dept Elect Engn, New York, NY 10027 USA
基金
美国国家科学基金会;
关键词
extrinsic mutual information transfer (EXIT) chart; Hadamard codes; low-complexity decoding; low rate; parallel concatenation; union bound; zigzag codes;
D O I
10.1109/TIT.2006.871613
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this correspondence, we introduce a new class of low-rate error correction codes called zigzag Hadamard (ZH) codes and their concatenation schemes. Each member of this class of codes is specified by a highly structured zigzag graph with each segment being a Hadamard codeword. The ZH codes enjoy extremely simple encoding and very low-complexity soft-input-soft-output (SISO) decoding based on a posteriori probability (APP) fast Hadamard transform (FHT) technique. We present an asymptotic performance analysis of the proposed concatenated ZH codes using the extrinsic mutual information transfer (EXIT) chart for infinite-length codes. We also provide a union bound analysis of the error performance for finite-length codes. Furthermore, the concatenated ZH codes are shown to be a good class of codes in the low-rate region. Specifically, a rate-0.0107 concatenated code with three ZH components and an inter-leaver size of 65536 can achieve the bit error rate (BER) performance of 10(-5) at -1.15 dB, which is only 0.44 dB away from the ultimate Shannon limit. The proposed concatenated ZH codes offer similar performance as another class of low-rate codes-the turbo-Hadamard codes, and better performance than superorthogonal turbo codes, with much lower encoding and decoding complexities.
引用
收藏
页码:1711 / 1723
页数:13
相关论文
共 50 条
  • [1] Low Rate Concatenated Zigzag-Hadamard Codes
    Yue, Guosen
    Leung, W. K.
    Ping, Li
    Wang, Xiaodong
    2006 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, VOLS 1-12, 2006, : 1189 - 1194
  • [2] Zigzag codes and concatenated zigzag codes
    Li, P
    Huang, XL
    Phamdo, N
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (02) : 800 - 807
  • [3] Concatenated twist Hadamard codes
    Che, Shuling
    Wang, Peng
    Wang, Xinmei
    IEEE COMMUNICATIONS LETTERS, 2007, 11 (12) : 992 - 994
  • [4] New Near Shannon Limit Codes: Zigzag Codes and Concatenated Zigzag Codes
    邓家梅
    王喆
    李明
    曹家麟
    李坪
    Journal of Shanghai University, 2002, (01) : 64 - 67
  • [5] On concatenated zigzag codes and their decoding schemes
    Wu, XF
    Xue, YJ
    Xiang, HG
    IEEE COMMUNICATIONS LETTERS, 2004, 8 (01) : 54 - 56
  • [6] Interleaving strategies for concatenated zigzag codes
    Bauch, Gerhard
    Kusume, Katsutoshi
    2007 PROCEEDINGS OF THE 16TH IST MOBILE AND WIRELESS COMMUNICATIONS, VOLS 1-3, 2007, : 5 - 9
  • [7] Design of irregular concatenated zigzag codes
    Hong, SN
    Shin, DJ
    2005 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), VOLS 1 AND 2, 2005, : 1363 - 1366
  • [8] Iterative decoding of concatenated Hadamard codes
    Ping, L
    Chan, S
    ICC 98 - 1998 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS VOLS 1-3, 1998, : 136 - 140
  • [9] Parallel Concatenated Tree Hadamard Codes
    Che, Shuling
    Wang, Xinmei
    IEEE COMMUNICATIONS LETTERS, 2011, 15 (07) : 743 - 745
  • [10] Concatenated Hadamard codes for spread spectrum systems
    Li, P
    Chan, S
    ELECTRONICS LETTERS, 1997, 33 (24) : 2032 - 2033