Concatenated zigzag Hadamard codes

被引:26
|
作者
Leung, WKR [1 ]
Yue, GS
Ping, L
Wang, XD
机构
[1] Huawei Technol Co Ltd, Res Dept PSMT, Shenzhen 518129, Peoples R China
[2] NEC Labs Amer Inc, Princeton, NJ 08540 USA
[3] City Univ Hong Kong, Dept Elect Engn, Kowloon, Hong Kong, Peoples R China
[4] Columbia Univ, Dept Elect Engn, New York, NY 10027 USA
基金
美国国家科学基金会;
关键词
extrinsic mutual information transfer (EXIT) chart; Hadamard codes; low-complexity decoding; low rate; parallel concatenation; union bound; zigzag codes;
D O I
10.1109/TIT.2006.871613
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this correspondence, we introduce a new class of low-rate error correction codes called zigzag Hadamard (ZH) codes and their concatenation schemes. Each member of this class of codes is specified by a highly structured zigzag graph with each segment being a Hadamard codeword. The ZH codes enjoy extremely simple encoding and very low-complexity soft-input-soft-output (SISO) decoding based on a posteriori probability (APP) fast Hadamard transform (FHT) technique. We present an asymptotic performance analysis of the proposed concatenated ZH codes using the extrinsic mutual information transfer (EXIT) chart for infinite-length codes. We also provide a union bound analysis of the error performance for finite-length codes. Furthermore, the concatenated ZH codes are shown to be a good class of codes in the low-rate region. Specifically, a rate-0.0107 concatenated code with three ZH components and an inter-leaver size of 65536 can achieve the bit error rate (BER) performance of 10(-5) at -1.15 dB, which is only 0.44 dB away from the ultimate Shannon limit. The proposed concatenated ZH codes offer similar performance as another class of low-rate codes-the turbo-Hadamard codes, and better performance than superorthogonal turbo codes, with much lower encoding and decoding complexities.
引用
收藏
页码:1711 / 1723
页数:13
相关论文
共 50 条
  • [21] Low-rate repeat-zigzag-hadamard codes
    Li, Kai
    Yue, Guosen
    Wang, Xiaodong
    Ping, Li
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (02) : 531 - 543
  • [22] Low-rate repeat-zigzag-Hadamard codes
    Li, Kai
    Yue, Guosen
    Wang, Xiaodong
    Ping, Li
    2006 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1-6, PROCEEDINGS, 2006, : 856 - +
  • [23] Approaching low rate Shannon limit using concatenated Hadamard codes
    Leung, WK
    Ho, KS
    Ping, L
    ELECTRONICS LETTERS, 2000, 36 (01) : 45 - 46
  • [24] EXIT functions of Hadamard components in repeat-zigzag-hadamard (RZH) codes with parallel decoding
    Li, Kai
    Wang, Xiaodong
    Ashikhmin, Alexei
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (04) : 1773 - 1785
  • [25] BER bounds on parallel concatenated single parity check arrays and zigzag codes
    Huang, XL
    Phamdo, N
    Ping, L
    GLOBECOM'99: SEAMLESS INTERCONNECTION FOR UNIVERSAL SERVICES, VOL 1-5, 1999, : 2436 - 2440
  • [26] Optimal rate-compatible irregular concatenated zigzag codes using puncturing and pruning
    Hong, Song-Nam
    Joo, Hyeong-Gun
    Shin, Dong-Joon
    2007 IEEE 65TH VEHICULAR TECHNOLOGY CONFERENCE, VOLS 1-6, 2007, : 1593 - +
  • [27] Low-Rate Regular Concatenated Zigzag Codes are Capacity-Approaching over the BEC
    Liu, Haiyang
    Ping, Li
    2017 IEEE INFORMATION THEORY WORKSHOP (ITW), 2017, : 111 - 115
  • [28] Adaptive Extrinsic Information Scaling for Concatenated Zigzag Codes Based on Max-Log-APP
    Zheng, Hao
    Xu, Xingan
    Lv, Changwei
    Shang, Yuanfang
    Wang, Guodong
    Ji, Chunlin
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2018, E101A (03) : 627 - 631
  • [29] From concatenated codes to graph codes
    Justesen, J
    Hoholdt, T
    2004 IEEE INFORMATION THEORY WORKSHOP, PROCEEDINGS, 2004, : 13 - 16
  • [30] Concatenated Fountain Codes
    Wang, Zheng
    Luo, Jie
    2009 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1- 4, 2009, : 2341 - 2345