Minkowski tensors of anisotropic spatial structure

被引:88
|
作者
Schroeder-Turk, G. E. [1 ]
Mickel, W. [1 ,2 ]
Kapfer, S. C. [1 ]
Schaller, F. M. [1 ]
Breidenbach, B. [1 ]
Hug, D. [1 ]
Mecke, K. [1 ]
机构
[1] Univ Erlangen Nurnberg, D-91058 Erlangen, Germany
[2] Karlsruhe Inst Technol, Inst Stochast, D-76128 Karlsruhe, Germany
来源
NEW JOURNAL OF PHYSICS | 2013年 / 15卷
关键词
PLANAR ANISOTROPY; THIN-FILM; PACKINGS; DENSITY; DEFORMATION; CRYSTALLINE; FUNCTIONALS; DEPENDENCE; ALIGNMENT; GEOMETRY;
D O I
10.1088/1367-2630/15/8/083028
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper describes the theoretical foundation of and explicit algorithms for a novel approach to morphology and anisotropy analysis of complex spatial structure using tensor-valued Minkowski functionals, the so-called Minkowski tensors. Minkowski tensors are generalizations of the well-known scalar Minkowski functionals and are explicitly sensitive to anisotropic aspects of morphology, relevant for example for elastic moduli or permeability of microstructured materials. Here we derive explicit linear-time algorithms to compute these tensorial measures for three-dimensional shapes. These apply to representations of any object that can be represented by a triangulation of its bounding surface; their application is illustrated for the polyhedral Voronoi cellular complexes of jammed sphere configurations and for triangulations of a biopolymer fibre network obtained by confocal microscopy. The paper further bridges the substantial notational and conceptual gap between the different but equivalent approaches to scalar or tensorial Minkowski functionals in mathematics and in physics, hence making the mathematical measure theoretic formalism more readily accessible for future application in the physical sciences.
引用
收藏
页数:38
相关论文
共 50 条
  • [41] Search for anomalous alignments of structures in Planck data using Minkowski Tensors
    Joby, P. K.
    Chingangbam, Pravabati
    Ghosh, Tuhin
    Ganesan, Vidhya
    Ravikumar, C. D.
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2019, (01):
  • [43] Anisotropic aluminum magnetic shielding tensors.
    Wasylishen, RE
    Schurko, RW
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1998, 216 : U744 - U744
  • [44] THEORETICAL ANISOTROPIC HYPERFINE TENSORS IN NEUTRAL RADICALS
    FALLE, HR
    WHITEHEA.MA
    CANADIAN JOURNAL OF CHEMISTRY, 1972, 50 (02): : 139 - &
  • [45] Anisotropic NMR interaction tensors in the decamethylaluminocenium cation
    Schurko, RW
    Hung, I
    Macdonald, CLB
    Cowley, AH
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (44) : 13204 - 13214
  • [46] Nonlinear structure tensors
    Brox, T
    Weickert, J
    Burgeth, B
    Mrázek, P
    IMAGE AND VISION COMPUTING, 2006, 24 (01) : 41 - 55
  • [47] Voronoi-Based Estimation of Minkowski Tensors from Finite Point Samples
    Daniel Hug
    Markus Kiderlen
    Anne Marie Svane
    Discrete & Computational Geometry, 2017, 57 : 545 - 570
  • [48] Minkowski Tensors in Redshift Space-Beyond the Plane-parallel Approximation
    Appleby, Stephen
    Kochappan, Joby P.
    Chingangbam, Pravabati
    Park, Changbom
    ASTROPHYSICAL JOURNAL, 2023, 942 (02):
  • [49] Voronoi-Based Estimation of Minkowski Tensors from Finite Point Samples
    Hug, Daniel
    Kiderlen, Markus
    Svane, Anne Marie
    DISCRETE & COMPUTATIONAL GEOMETRY, 2017, 57 (03) : 545 - 570