Minkowski tensors of anisotropic spatial structure

被引:88
|
作者
Schroeder-Turk, G. E. [1 ]
Mickel, W. [1 ,2 ]
Kapfer, S. C. [1 ]
Schaller, F. M. [1 ]
Breidenbach, B. [1 ]
Hug, D. [1 ]
Mecke, K. [1 ]
机构
[1] Univ Erlangen Nurnberg, D-91058 Erlangen, Germany
[2] Karlsruhe Inst Technol, Inst Stochast, D-76128 Karlsruhe, Germany
来源
NEW JOURNAL OF PHYSICS | 2013年 / 15卷
关键词
PLANAR ANISOTROPY; THIN-FILM; PACKINGS; DENSITY; DEFORMATION; CRYSTALLINE; FUNCTIONALS; DEPENDENCE; ALIGNMENT; GEOMETRY;
D O I
10.1088/1367-2630/15/8/083028
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper describes the theoretical foundation of and explicit algorithms for a novel approach to morphology and anisotropy analysis of complex spatial structure using tensor-valued Minkowski functionals, the so-called Minkowski tensors. Minkowski tensors are generalizations of the well-known scalar Minkowski functionals and are explicitly sensitive to anisotropic aspects of morphology, relevant for example for elastic moduli or permeability of microstructured materials. Here we derive explicit linear-time algorithms to compute these tensorial measures for three-dimensional shapes. These apply to representations of any object that can be represented by a triangulation of its bounding surface; their application is illustrated for the polyhedral Voronoi cellular complexes of jammed sphere configurations and for triangulations of a biopolymer fibre network obtained by confocal microscopy. The paper further bridges the substantial notational and conceptual gap between the different but equivalent approaches to scalar or tensorial Minkowski functionals in mathematics and in physics, hence making the mathematical measure theoretic formalism more readily accessible for future application in the physical sciences.
引用
收藏
页数:38
相关论文
共 50 条
  • [31] ON DAMAGE EFFECT TENSORS OF ANISOTROPIC SOLIDS
    LAM, KY
    ZHANG, JM
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1995, 75 (01): : 51 - 59
  • [32] Jammed spheres: Minkowski tensors reveal onset of local crystallinity
    Kapfer, Sebastian C.
    Mickel, Walter
    Mecke, Klaus
    Schroeder-Turk, Gerd E.
    PHYSICAL REVIEW E, 2012, 85 (03):
  • [33] Description of anisotropic pore space structure of permeable materials based on Minkowski metric space
    Cieszko, M.
    ARCHIVES OF MECHANICS, 2009, 61 (06): : 425 - 444
  • [34] Non-local adaptive structure tensors Application to anisotropic diffusion and shock filtering
    Dore, Vincent
    Moghaddam, Reza Farrahi
    Cheriet, Mohamed
    IMAGE AND VISION COMPUTING, 2011, 29 (11) : 730 - 743
  • [35] ESTIMATION OF MINKOWSKI TENSORS FROM DIGITAL GREY-SCALE IMAGES
    Svane, Anne Marie
    IMAGE ANALYSIS & STEREOLOGY, 2015, 34 (01): : 51 - 61
  • [36] The Shape of Anisotropic Fractals: Scaling of Minkowski Functionals
    Schoenhoefer, Philipp
    Mecke, Klaus
    FRACTAL GEOMETRY AND STOCHASTICS V, 2015, 70 : 38 - 51
  • [37] An anisotropic shrinking flow and Lp Minkowski problem
    Sheng, Weimin
    Yi, Caihong
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2022, 30 (07) : 1511 - 1540
  • [38] Model of spatial structure of anisotropic warp knitted fabrics
    Mikolajczyk, Zbigniew
    Fibres and Textiles in Eastern Europe, 2001, 9 (02): : 23 - 27
  • [39] Model of spatial structure of anisotropic warp knitted fabrics
    Mikolajczyk, Z
    FIBRES & TEXTILES IN EASTERN EUROPE, 2001, 9 (02) : 23 - 27
  • [40] Introducing Anisotropic Minkowski Functionals and Quantitative Anisotropy Measures for Local Structure Analysis in Biomedical Imaging
    Wismueller, Axel
    De, Titas
    Lochmueller, Eva
    Eckstein, Felix
    Nagarajan, Mahesh B.
    MEDICAL IMAGING 2013: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2013, 8672