Minkowski tensors of anisotropic spatial structure

被引:88
|
作者
Schroeder-Turk, G. E. [1 ]
Mickel, W. [1 ,2 ]
Kapfer, S. C. [1 ]
Schaller, F. M. [1 ]
Breidenbach, B. [1 ]
Hug, D. [1 ]
Mecke, K. [1 ]
机构
[1] Univ Erlangen Nurnberg, D-91058 Erlangen, Germany
[2] Karlsruhe Inst Technol, Inst Stochast, D-76128 Karlsruhe, Germany
来源
NEW JOURNAL OF PHYSICS | 2013年 / 15卷
关键词
PLANAR ANISOTROPY; THIN-FILM; PACKINGS; DENSITY; DEFORMATION; CRYSTALLINE; FUNCTIONALS; DEPENDENCE; ALIGNMENT; GEOMETRY;
D O I
10.1088/1367-2630/15/8/083028
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper describes the theoretical foundation of and explicit algorithms for a novel approach to morphology and anisotropy analysis of complex spatial structure using tensor-valued Minkowski functionals, the so-called Minkowski tensors. Minkowski tensors are generalizations of the well-known scalar Minkowski functionals and are explicitly sensitive to anisotropic aspects of morphology, relevant for example for elastic moduli or permeability of microstructured materials. Here we derive explicit linear-time algorithms to compute these tensorial measures for three-dimensional shapes. These apply to representations of any object that can be represented by a triangulation of its bounding surface; their application is illustrated for the polyhedral Voronoi cellular complexes of jammed sphere configurations and for triangulations of a biopolymer fibre network obtained by confocal microscopy. The paper further bridges the substantial notational and conceptual gap between the different but equivalent approaches to scalar or tensorial Minkowski functionals in mathematics and in physics, hence making the mathematical measure theoretic formalism more readily accessible for future application in the physical sciences.
引用
收藏
页数:38
相关论文
共 50 条
  • [21] Anisotropic polarization tensors for ellipses and ellipsoids
    School of Mathematical Sciences, Seoul National University, Seoul 151-747, Korea, Republic of
    J Comput Math, 2007, 2 (157-168):
  • [22] Permeability Tensors of Anisotropic Fracture Networks
    M. Chen
    M. Bai
    J.-C. Roegiers
    Mathematical Geology, 1999, 31 (4): : 335 - 373
  • [23] On damage effect tensors of anisotropic solids
    Lam, K.Y.
    Zhang, J.M.
    Zeitschrift fuer Angewandte Mathematik und Mechanik, 1995, 75 (01):
  • [24] Permeability tensors of anisotropic fracture networks
    Chen, M
    Bai, M
    Roegiers, JC
    MATHEMATICAL GEOLOGY, 1999, 31 (04): : 355 - 373
  • [25] Metric tensors for anisotropic mesh generation
    Huang, WZ
    JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 204 (02) : 633 - 665
  • [26] Anisotropic diffusion driven by diffusion tensors
    Chen, YM
    Chastain, S
    MATHEMATICAL MODELING, ESTIMATION, AND IMAGING, 2000, 4121 : 148 - 157
  • [27] ANISOTROPIC POLARIZATION TENSORS FOR ELLIPSES AND ELLIPSOIDS
    Hyeonbae Kang Kyoungsun Kim (School of Mathematical Sciences
    Journal of Computational Mathematics, 2007, (02) : 157 - 168
  • [28] Anisotropic polarization tensors for ellipses and ellipsoids
    Kang, Hyeonbae
    Kim, Kyoungsun
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2007, 25 (02) : 157 - 168
  • [29] A GEOMETRICAL PICTURE OF ANISOTROPIC ELASTIC TENSORS
    BACKUS, G
    REVIEWS OF GEOPHYSICS AND SPACE PHYSICS, 1970, 8 (03): : 633 - &
  • [30] Morphometry on the sphere: Cartesian and irreducible Minkowski tensors explained and implemented
    Collischon, Caroline
    Klatt, Michael A.
    Banday, Anthony J.
    Sasaki, Manami
    Raeth, Christoph
    COMMUNICATIONS PHYSICS, 2024, 7 (01):