Minkowski tensors of anisotropic spatial structure

被引:88
|
作者
Schroeder-Turk, G. E. [1 ]
Mickel, W. [1 ,2 ]
Kapfer, S. C. [1 ]
Schaller, F. M. [1 ]
Breidenbach, B. [1 ]
Hug, D. [1 ]
Mecke, K. [1 ]
机构
[1] Univ Erlangen Nurnberg, D-91058 Erlangen, Germany
[2] Karlsruhe Inst Technol, Inst Stochast, D-76128 Karlsruhe, Germany
来源
NEW JOURNAL OF PHYSICS | 2013年 / 15卷
关键词
PLANAR ANISOTROPY; THIN-FILM; PACKINGS; DENSITY; DEFORMATION; CRYSTALLINE; FUNCTIONALS; DEPENDENCE; ALIGNMENT; GEOMETRY;
D O I
10.1088/1367-2630/15/8/083028
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper describes the theoretical foundation of and explicit algorithms for a novel approach to morphology and anisotropy analysis of complex spatial structure using tensor-valued Minkowski functionals, the so-called Minkowski tensors. Minkowski tensors are generalizations of the well-known scalar Minkowski functionals and are explicitly sensitive to anisotropic aspects of morphology, relevant for example for elastic moduli or permeability of microstructured materials. Here we derive explicit linear-time algorithms to compute these tensorial measures for three-dimensional shapes. These apply to representations of any object that can be represented by a triangulation of its bounding surface; their application is illustrated for the polyhedral Voronoi cellular complexes of jammed sphere configurations and for triangulations of a biopolymer fibre network obtained by confocal microscopy. The paper further bridges the substantial notational and conceptual gap between the different but equivalent approaches to scalar or tensorial Minkowski functionals in mathematics and in physics, hence making the mathematical measure theoretic formalism more readily accessible for future application in the physical sciences.
引用
收藏
页数:38
相关论文
共 50 条
  • [1] Minkowski tensors of anisotropic spatial structure
    Schröder-Turk, G.E.
    Mickel, W.
    Kapfer, S.C.
    Schaller, F.M.
    Breidenbach, B.
    Hug, D.
    Mecke, K.
    New Journal of Physics, 2013, 15
  • [2] Characterization of anisotropic Gaussian random fields by Minkowski tensors
    Klatt, Michael Andreas
    Hoermann, Max
    Mecke, Klaus
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2022, 2022 (04):
  • [3] Anisotropic filtering with nonlinear structure tensors
    Castano-Moraga, Carlos-Alberto
    Ruiz-Alzola, Juan
    IMAGE PROCESSING: ALGORITHMS AND SYSTEMS, NEURAL NETWORKS, AND MACHINE LEARNING, 2006, 6064
  • [4] STRUCTURE OF CORRELATION TENSORS IN HOMOGENEOUS ANISOTROPIC TURBULENCE
    MATTHAEUS, WH
    SMITH, C
    PHYSICAL REVIEW A, 1981, 24 (04): : 2135 - 2144
  • [5] Structure-Adaptive Anisotropic Filter with Local Structure Tensors
    Wang, Wei
    Gao, Jinghuai
    Li, Kang
    2008 INTERNATIONAL SYMPOSIUM ON INTELLIGENT INFORMATION TECHNOLOGY APPLICATION, VOL II, PROCEEDINGS, 2008, : 1005 - 1010
  • [6] Minkowski Tensors and Local Structure Metrics: Amorphous and Crystalline Sphere Packings
    Schroeder-Turk, G. E.
    Schielein, R.
    Kapfer, S. C.
    Schaller, F. M.
    Delaney, G. W.
    Senden, T.
    Saadatfar, M.
    Aste, T.
    Mecke, K.
    POWDERS AND GRAINS 2013, 2013, 1542 : 349 - 352
  • [7] ANISOTROPIC TENSORS
    SIROTIN, II
    DOKLADY AKADEMII NAUK SSSR, 1960, 133 (02): : 321 - 324
  • [8] On an Anisotropic Minkowski Problem
    Xia, Chao
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2013, 62 (05) : 1399 - 1430
  • [9] ON GENERATION OF ANISOTROPIC TENSORS
    SMITH, GF
    JOURNAL OF MATHEMATICAL PHYSICS, 1964, 5 (11) : 1612 - &
  • [10] Local anisotropy of fluids using Minkowski tensors
    Kapfer, S. C.
    Mickel, W.
    Schaller, F. M.
    Spanner, M.
    Goll, C.
    Nogawa, T.
    Ito, N.
    Mecke, K.
    Schroeder-Turk, G. E.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2010,