Subregular spreads of Hermitian unitals

被引:1
|
作者
Dover, J
机构
[1] Edgewater, MD 21037
关键词
Hermitian unitals; spread; subregular;
D O I
10.1007/s10623-005-2141-x
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we consider the problem of constructing partitions of the points of a Hermitian unital into pairwise disjoint blocks, commonly known as spreads. We generalize a construction of Baker et al. (In Finite Geometry and Combinatorics, Vol. 191 of London Math. Soc. Lecture Not Ser., pages 17-30. Cambridge University Press, Cambridge, 1993.) to provide a new infinite family of spreads. Morover, we develop a structural connection between these new spreads of the Hermitian unital in PG(2, q(2)) and the subregular spreads of PG(3, q), allowing us to christen a new "subregular" family of spreads in the Hermitian unital in PG(2, q(2)).
引用
收藏
页码:5 / 15
页数:11
相关论文
共 50 条
  • [1] Subregular Spreads of Hermitian Unitals
    Jeremy Dover
    Designs, Codes and Cryptography, 2006, 39 : 5 - 15
  • [2] Lifting Subregular Spreads
    Johnson, Norman
    JOURNAL OF GEOMETRY, 2008, 89 (1-2) : 70 - 96
  • [3] Spreads and resolutions of Ree unitals
    Dover, J
    ARS COMBINATORIA, 2000, 54 : 301 - 309
  • [4] Subregular spreads and blocking sets
    Bader L.
    De Vito P.
    Ricerche di Matematica, 2014, 63 (2) : 347 - 353
  • [5] Veronesean embeddings of Hermitian unitals
    De Wispeleare, A.
    Huizinga, J.
    Van Maldeghem, H.
    EUROPEAN JOURNAL OF COMBINATORICS, 2010, 31 (06) : 1594 - 1610
  • [6] Finite subunitals of the Hermitian unitals
    Theo Grundhöfer
    Markus J. Stroppel
    Hendrik Van Maldeghem
    Journal of Geometry, 2022, 113
  • [7] HERMITIAN UNITALS ARE CODE WORDS
    BLOKHUIS, A
    BROUWER, A
    WILBRINK, H
    DISCRETE MATHEMATICS, 1991, 97 (1-3) : 63 - 68
  • [8] Finite subunitals of the Hermitian unitals
    Grundhoefer, Theo
    Stroppel, Markus J.
    Van Maldeghem, Hendrik
    JOURNAL OF GEOMETRY, 2022, 113 (01)
  • [9] On Hermitian spreads
    Cardinali, I
    Trombetti, R
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2004, 11 (01) : 63 - 67
  • [10] ARCS AND OVALS IN THE HERMITIAN AND REE UNITALS
    ASSMUS, EF
    KEY, JD
    EUROPEAN JOURNAL OF COMBINATORICS, 1989, 10 (04) : 297 - 308