In this paper, we consider the problem of constructing partitions of the points of a Hermitian unital into pairwise disjoint blocks, commonly known as spreads. We generalize a construction of Baker et al. (In Finite Geometry and Combinatorics, Vol. 191 of London Math. Soc. Lecture Not Ser., pages 17-30. Cambridge University Press, Cambridge, 1993.) to provide a new infinite family of spreads. Morover, we develop a structural connection between these new spreads of the Hermitian unital in PG(2, q(2)) and the subregular spreads of PG(3, q), allowing us to christen a new "subregular" family of spreads in the Hermitian unital in PG(2, q(2)).