Secant Distributions of Unitals

被引:0
|
作者
Gezek, Mustafa [1 ]
机构
[1] Tekirdag Namik Kemal Univ, Dept Math, TR-59030 Tekirdag, Turkiye
关键词
Pedal sets; projective plane; steiner designs; unitals; PLANES;
D O I
10.1007/s00025-024-02261-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let U be a unital embedded in a projective plane Pi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Pi $$\end{document} of order q2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q<^>2$$\end{document}. For R is an element of U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R\in U$$\end{document}, let sR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_R$$\end{document} and tR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_R$$\end{document} be a secant line through R and the tangent line to U at point R, respectively. If the tangent lines to U, passing through the points in sR boolean AND U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_R\cap U$$\end{document}, intersect at a single point on tR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_R$$\end{document}, then sR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_R$$\end{document} is referred to as a secant line satisfying the desired property. If ni\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_i$$\end{document} of the points of U have exactly mi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_i$$\end{document} secant lines satisfying the desired property, then m1n1,m2n2,& ctdot;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} m_1<^>{n_1}, m_2<^>{n_2}, \cdots \end{aligned}$$\end{document}is called the secant distribution of U, where & sum;ni=q3+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum n_i=q<^>3+1$$\end{document}, and 0 <= mi <= q2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\le m_i\le q<^>2$$\end{document}. In this article, we show that collinear pedal sets of a unital U plays an important role in the secant distribution of U. Formulas for secant distributions of unitals having 0,1,q2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0,1,q<^>2,$$\end{document} or q2+q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q<^>2+q$$\end{document} special points are provided. Statistics regarding to secant distributions of unitals embedded in planes of orders q2 <= 25\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q<^>2\le 25$$\end{document} are presented. Some open problems related to secant distributions of unitals having specific number of collinear pedal sets are discussed.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] GENERALIZED HYPERBOLIC SECANT DISTRIBUTIONS
    HARKNESS, WL
    HARKNESS, ML
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1968, 63 (321) : 329 - &
  • [2] ON RANDOM VARIATE GENERATION FOR THE GENERALIZED HYPERBOLIC SECANT DISTRIBUTIONS
    DEVROYE, L
    STATISTICS AND COMPUTING, 1993, 3 (03) : 125 - 134
  • [3] Secant Kumaraswamy Family of Distributions: Properties, Regression Model, and Applications
    Nanga, Salifu
    Sayibu, Shei Baba
    Angbing, Irene Dekomwine
    Alhassan, Mubarika
    Benson, Abdul-Majeed
    Abubakari, Abdul Ghaniyyu
    Nasiru, Suleman
    COMPUTATIONAL AND MATHEMATICAL METHODS, 2024, 2024
  • [4] On deriving unitals
    Blokhuis, A
    O'Keefe, CM
    DISCRETE MATHEMATICS, 1999, 197 (1-3) : 137 - 141
  • [5] Buekenhout unitals
    Ebert, GL
    DISCRETE MATHEMATICS, 1999, 208 : 247 - 260
  • [6] Automorphisms of unitals
    Stroppel, Markus
    van Maldeghem, Hendrik
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2006, 12 (05) : 895 - 908
  • [7] Unitals and codes
    Betten, A
    Betten, D
    Tonchev, VD
    DISCRETE MATHEMATICS, 2003, 267 (1-3) : 23 - 33
  • [8] Unitals in the Hall plane
    Barwick S.G., Barwick S.G.
    Journal of Geometry, 1997, 58 (1-2) : 26 - 42
  • [9] Unitals and inversive planes
    Barwick S.G.
    O'Keefe C.M.
    Journal of Geometry, 1997, 58 (1-2) : 43 - 52
  • [10] A characterisation of classical unitals
    Luca Giuzzi
    Journal of Geometry, 2002, 74 : 86 - 89