ARCS AND OVALS IN THE HERMITIAN AND REE UNITALS

被引:9
|
作者
ASSMUS, EF [1 ]
KEY, JD [1 ]
机构
[1] UNIV BIRMINGHAM,DEPT MATH,BIRMINGHAM B15 2TT,W MIDLANDS,ENGLAND
关键词
D O I
10.1016/S0195-6698(89)80001-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:297 / 308
页数:12
相关论文
共 37 条
  • [1] Characterizing the Hermitian and Ree Unitals on 28 Points
    Mcguire G.
    Tonchev V.D.
    Ward H.N.
    Designs, Codes and Cryptography, 1998, 13 (1) : 57 - 61
  • [2] THE SMALLEST REE UNITALS
    GRUNING, K
    ARCHIV DER MATHEMATIK, 1986, 46 (05) : 473 - 480
  • [3] Ovals and unitals in commutative twisted field planes
    Abatangelo, V
    Enea, MR
    Korchmáros, G
    Larato, B
    DISCRETE MATHEMATICS, 1999, 208 : 3 - 8
  • [4] Spreads and resolutions of Ree unitals
    Dover, J
    ARS COMBINATORIA, 2000, 54 : 301 - 309
  • [5] Ovals and unitals in commutative twisted field planes
    Abatangelo, V.
    Enea, M.R.
    Korchmaros, G.
    Larato, B.
    Discrete Mathematics, 1999, 208-209 : 3 - 8
  • [6] Veronesean embeddings of Hermitian unitals
    De Wispeleare, A.
    Huizinga, J.
    Van Maldeghem, H.
    EUROPEAN JOURNAL OF COMBINATORICS, 2010, 31 (06) : 1594 - 1610
  • [7] Finite subunitals of the Hermitian unitals
    Theo Grundhöfer
    Markus J. Stroppel
    Hendrik Van Maldeghem
    Journal of Geometry, 2022, 113
  • [8] HERMITIAN UNITALS ARE CODE WORDS
    BLOKHUIS, A
    BROUWER, A
    WILBRINK, H
    DISCRETE MATHEMATICS, 1991, 97 (1-3) : 63 - 68
  • [9] Finite subunitals of the Hermitian unitals
    Grundhoefer, Theo
    Stroppel, Markus J.
    Van Maldeghem, Hendrik
    JOURNAL OF GEOMETRY, 2022, 113 (01)
  • [10] Subregular Spreads of Hermitian Unitals
    Jeremy Dover
    Designs, Codes and Cryptography, 2006, 39 : 5 - 15