HERMITIAN UNITALS ARE CODE WORDS

被引:15
|
作者
BLOKHUIS, A
BROUWER, A
WILBRINK, H
机构
[1] Department of Mathematics, Technische Universiteit Eindhoven, 5600 MB Eindhoven
关键词
D O I
10.1016/0012-365X(91)90422-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that a unital PG(2, q2) is Hermitian if and only if it is in the code generated by the lines of PG(2, q2). ThiS implies the truth of a conjecture made by Assmus and Key.
引用
收藏
页码:63 / 68
页数:6
相关论文
共 50 条
  • [1] Veronesean embeddings of Hermitian unitals
    De Wispeleare, A.
    Huizinga, J.
    Van Maldeghem, H.
    EUROPEAN JOURNAL OF COMBINATORICS, 2010, 31 (06) : 1594 - 1610
  • [2] Finite subunitals of the Hermitian unitals
    Theo Grundhöfer
    Markus J. Stroppel
    Hendrik Van Maldeghem
    Journal of Geometry, 2022, 113
  • [3] Finite subunitals of the Hermitian unitals
    Grundhoefer, Theo
    Stroppel, Markus J.
    Van Maldeghem, Hendrik
    JOURNAL OF GEOMETRY, 2022, 113 (01)
  • [4] Subregular spreads of Hermitian unitals
    Dover, J
    DESIGNS CODES AND CRYPTOGRAPHY, 2006, 39 (01) : 5 - 15
  • [5] Subregular Spreads of Hermitian Unitals
    Jeremy Dover
    Designs, Codes and Cryptography, 2006, 39 : 5 - 15
  • [6] ARCS AND OVALS IN THE HERMITIAN AND REE UNITALS
    ASSMUS, EF
    KEY, JD
    EUROPEAN JOURNAL OF COMBINATORICS, 1989, 10 (04) : 297 - 308
  • [7] Unitals in the code of the Hughes plane
    Baker, RD
    Wantz, KL
    JOURNAL OF COMBINATORIAL DESIGNS, 2004, 12 (01) : 35 - 38
  • [8] Embeddings of hermitian unitals into pappian projective planes
    Grundhoefer, Theo
    Stroppel, Markus J.
    Van Maldeghem, Hendrik
    AEQUATIONES MATHEMATICAE, 2019, 93 (05) : 927 - 953
  • [9] Characterizing the Hermitian and Ree Unitals on 28 Points
    Mcguire G.
    Tonchev V.D.
    Ward H.N.
    Designs, Codes and Cryptography, 1998, 13 (1) : 57 - 61
  • [10] Embeddings of hermitian unitals into pappian projective planes
    Theo Grundhöfer
    Markus J. Stroppel
    Hendrik Van Maldeghem
    Aequationes mathematicae, 2019, 93 : 927 - 953