ATCA data acquisition system for gamma-ray spectrometry

被引:30
|
作者
Pereira, R. C. [1 ]
Sousa, J. [1 ]
Fernandes, A. M. [1 ]
Patricio, F. [1 ]
Carvalho, B. [1 ]
Neto, A. [1 ]
Varandas, C. A. F. [1 ]
Gorini, G. [2 ]
Tardocchi, M. [2 ]
Gin, D. [3 ]
Shevelev, A. [3 ]
机构
[1] Univ Tecn Lisboa, IST Ctr Fusao Nucl, Inst Super Tecn, EURATOM Assoc, Lisbon, Portugal
[2] EURATOM ENEA CNR Assoc, Ist Fis Plasma, Milan, Italy
[3] Russian Acad Sci, AF Ioffe Physicotech Inst, St Petersburg 194021, Russia
关键词
data acquisition; gamma-ray spectroscopy; PHA; pulse processing;
D O I
10.1016/j.fusengdes.2007.10.011
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The gamma-ray spectrometer JET EP2 (Joint European Torus enhancement project 2) project aims to perform high-resolution gamma spectroscopy at very high count rate (up to few MHz). Traditional analogue electronic has count rate and pulse processing limitations (long dead-time, pile-up challenge). Digital pulse processing (DPP) systems have been shown to have better performance than analogue ones for processing neutrons or/and gamma-ray signals. DPP can synthesize almost any pulse response shape without the signal degradation associated to complex analogue paths. High-speed transient recorders (TR) with auto-trigger functionality are used to digitize and store the detailed shape of pulses. The data acquisition (DAQ) system provides sophisticated analysis/data reduction based on real time algorithms, implemented in field programmable gate arrays (FPGA), for Pulse Height Analysis (PHA) while resolving pulse pile-up of digitized pulses. This paper describes a new DAQ system for real-time pulse analysis. The system is based on the Advanced Telecommunications Computing Architecture (TM) (ATCA (TM)) and contains an ix86-based processor blade with up to 40 GFLOPS and a TR module interconnected through PCI Express (PCIe) links. TR module features: (i) 8 channels of 13 bit resolution with accuracy equal or higher than 11 bit to cope with the expected signal-to-noise ratio (SNR) of the input pulses; (ii) up to 500 MSamples/s sampling rate with the possibility to achieve 1 GSamples/s; and (iii) 2 or 4 GB of local memory. The core of the TR module is two FPGAs able to perform real-time processing algorithms such as PHA and pile-up resolution. This will allow data reduction by a factor of at least 6 and eventually spectra output in real-time. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:341 / 345
页数:5
相关论文
共 50 条
  • [41] Metrological characterization of the ADONIS system used in gamma-ray spectrometry
    Plagnard, J
    Morel, J
    Tuan, AT
    APPLIED RADIATION AND ISOTOPES, 2004, 60 (2-4) : 179 - 183
  • [42] NEW SYSTEM OF GAMMA-RAY SPECTROMETRY FOR ACTIVATION-ANALYSIS
    MURATA, Y
    HIRAI, S
    OKAMOTO, M
    KAKIHANA, H
    JOURNAL OF RADIOANALYTICAL CHEMISTRY, 1977, 36 (02): : 525 - 535
  • [43] AN AXIALLY SYMMETRICAL GAMMA-RAY BACKSCATTER SYSTEM FOR DUMOND SPECTROMETRY
    MACKENZIE, IK
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1990, 299 (1-3): : 377 - 381
  • [44] Measurement assurance of gamma-ray spectrometry in the system of radioecological monitoring
    Khajkovich, I.M.
    Shevrygin, O.N.
    Fominykh, V.I.
    Atomnaya Energiya, 1992, 73 (05): : 387 - 392
  • [45] Control and data acquisition software upgrade for JET gamma-ray diagnostics
    Santos, B.
    Fernandes, A.
    Pereira, R. C.
    Neto, A.
    Bielecki, J.
    Craciunescu, T.
    Figueiredo, J.
    Kiptily, V.
    Murari, A.
    Nocente, M.
    Rigamonti, D.
    Sousa, J.
    Tardocchi, M.
    Giacomelli, L.
    Zychor, I.
    Broslawski, A.
    Gosk, M.
    Korolczuk, S.
    Urban, A.
    Boltruczyk, G.
    Correia, C. M. B. A.
    Goncalves, B.
    Abduallev, S.
    Abhangi, M.
    Abreu, P.
    Afzal, M.
    Aggarwal, K. M.
    Ahlgren, T.
    Ahn, J. H.
    Aho-Mantila, L.
    Aiba, N.
    Airila, M.
    Albanese, R.
    Aldred, V.
    Alegre, D.
    Alessi, E.
    Aleynikov, P.
    Alfier, A.
    Alkseev, A.
    Allinson, M.
    Alper, B.
    Alves, E.
    Ambrosino, G.
    Ambrosino, R.
    Amicucci, L.
    Amosov, V.
    Sunden, E. Andersson
    Angelone, M.
    Anghel, M.
    Angioni, C.
    FUSION ENGINEERING AND DESIGN, 2018, 128 : 117 - 121
  • [46] Upscaling ground-based backpack gamma-ray spectrometry to spatial resolution of UAV-based gamma-ray spectrometry for system validation
    Altfelder, Sven
    Preugschat, Benedikt
    Matos, Milan
    Kandzia, Felix
    Wiens, Benjamin
    Eshmuradov, Otabek
    Kunze, Christian
    JOURNAL OF ENVIRONMENTAL RADIOACTIVITY, 2024, 273
  • [47] INSTRUMENTAL METHODS OF GAMMA-RAY SPECTROMETRY
    CONNALLY, RE
    ANALYTICAL CHEMISTRY, 1956, 28 (12) : 1847 - 1853
  • [48] GAMMA-RAY SPECTROMETRY IN CENTRAL MOROCCO
    DEMNATI, A
    NAUDY, H
    GEOPHYSICS, 1975, 40 (02) : 331 - 343
  • [49] GAMMA-RAY SPECTROMETRY OF HOT PLASMAS
    Chugunov, I. N.
    Kiptily, V. G.
    Shevelev, A. E.
    Gin, D. B.
    FUSION SCIENCE AND TECHNOLOGY, 2011, 59 (1T) : 176 - 179
  • [50] Time resolved gamma-ray spectrometry
    Szentmiklosi, L.
    Belgya, T.
    Molnar, G. L.
    Revay, Zs.
    JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY, 2007, 271 (02) : 439 - 445