Lattice Boltzmann Modeling of Advection-Diffusion-Reaction Equations: Pattern Formation Under Uniform Differential Advection

被引:8
|
作者
Ayodele, S. G. [1 ]
Raabe, D. [1 ]
Varnik, F. [1 ,2 ]
机构
[1] Max Planck Inst, Max Planck Str 1, D-40237 Dusseldorf, Germany
[2] Ruhr Univ Bochum, Interdisciplinary Ctr Adv Mat Simulat, D-44780 Bochum, Germany
关键词
Advective transport; differential advection; Turing patterns; linear stability; lattice Boltzmann; SPATIAL-PATTERNS; DYNAMICS; OSCILLATIONS;
D O I
10.4208/cicp.441011.270112s
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A lattice Boltzmann model for the study of advection-diffusion-reaction (ADR) problems is proposed. Via multiscale expansion analysis, we derive from the LB model the resulting macroscopic equations. It is shown that a linear equilibrium distribution is sufficient to produce ADR equations within error terms of the order of the Mach number squared. Furthermore, we study spatially varying structures arising from the interaction of advective transport with a cubic autocatalytic reaction-diffusion process under an imposed uniform flow. While advecting all the present species leads to trivial translation of the Turing patterns, differential advection leads to flow induced instability characterized with traveling stripes with a velocity dependent wave vector parallel to the flow direction. Predictions from a linear stability analysis of the model equations are found to be in line with these observations.
引用
收藏
页码:741 / 756
页数:16
相关论文
共 50 条
  • [21] Numerical Solutions of Space-Fractional Advection-Diffusion-Reaction Equations
    Salomoni, Valentina Anna Lia
    De Marchi, Nico
    FRACTAL AND FRACTIONAL, 2022, 6 (01)
  • [22] An advection-diffusion-reaction model for coffee percolation
    Egidi, Nadaniela
    Giacomini, Josephin
    Maponi, Pierluigi
    Perticarini, Alessia
    Cognigni, Luca
    Fioretti, Lauro
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (06):
  • [23] Numerical schemes obtained from lattice Boltzmann equations for advection diffusion equations
    Suga, Shinsuke
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2006, 17 (11): : 1563 - 1577
  • [24] Upscaling of the advection-diffusion-reaction equation with Monod reaction
    Hesse, F.
    Radu, F. A.
    Thullner, M.
    Attinger, S.
    ADVANCES IN WATER RESOURCES, 2009, 32 (08) : 1336 - 1351
  • [25] Fractal-fractional advection-diffusion-reaction equations by Ritz approximation approach
    Nasrudin, Farah Suraya Md
    Phang, Chang
    Kanwal, Afshan
    OPEN PHYSICS, 2023, 21 (01):
  • [26] Coupling kinetic models and advection-diffusion equations. 2. Sensitivity analysis of an advection-diffusion-reaction model
    Uys, Lafras
    Hofmeyr, Jan-Hendrik S.
    Rohwer, Johann M.
    IN SILICO PLANTS, 2021, 3 (01):
  • [27] ACCELERATING EXPONENTIAL INTEGRATORS TO EFFICIENTLY SOLVE SEMILINEAR ADVECTION-DIFFUSION-REACTION EQUATIONS
    Caliari, Marco
    Cassini, Fabio
    Einkemmer, Lukas
    Ostermann, Alexander
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2024, 46 (02): : A906 - A928
  • [28] A conservative, positivity preserving scheme for advection-diffusion-reaction equations in biochemical applications
    Benz, Joachim
    Meister, Andreas
    Zardo, Philipp Andrea
    HYPERBOLIC PROBLEMS: THEORY, NUMERICS AND APPLICATIONS, PART 2, 2009, 67 : 399 - +
  • [29] ADVECTION-DIFFUSION-REACTION EQUATIONS: HYPERBOLIZATION AND HIGH-ORDER ADER DISCRETIZATIONS
    Toro, Eleuterio F.
    Montecinos, Gino I.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (05): : A2423 - A2457
  • [30] Traveling wave solutions and stability behaviours under advection dominance for singularly perturbed advection-diffusion-reaction processes
    Cosgun, Tahir
    Sari, Murat
    CHAOS SOLITONS & FRACTALS, 2020, 138 (138)