Lattice Boltzmann Modeling of Advection-Diffusion-Reaction Equations: Pattern Formation Under Uniform Differential Advection

被引:8
|
作者
Ayodele, S. G. [1 ]
Raabe, D. [1 ]
Varnik, F. [1 ,2 ]
机构
[1] Max Planck Inst, Max Planck Str 1, D-40237 Dusseldorf, Germany
[2] Ruhr Univ Bochum, Interdisciplinary Ctr Adv Mat Simulat, D-44780 Bochum, Germany
关键词
Advective transport; differential advection; Turing patterns; linear stability; lattice Boltzmann; SPATIAL-PATTERNS; DYNAMICS; OSCILLATIONS;
D O I
10.4208/cicp.441011.270112s
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A lattice Boltzmann model for the study of advection-diffusion-reaction (ADR) problems is proposed. Via multiscale expansion analysis, we derive from the LB model the resulting macroscopic equations. It is shown that a linear equilibrium distribution is sufficient to produce ADR equations within error terms of the order of the Mach number squared. Furthermore, we study spatially varying structures arising from the interaction of advective transport with a cubic autocatalytic reaction-diffusion process under an imposed uniform flow. While advecting all the present species leads to trivial translation of the Turing patterns, differential advection leads to flow induced instability characterized with traveling stripes with a velocity dependent wave vector parallel to the flow direction. Predictions from a linear stability analysis of the model equations are found to be in line with these observations.
引用
收藏
页码:741 / 756
页数:16
相关论文
共 50 条
  • [31] The Finite Volume-Complete Flux Scheme for Advection-Diffusion-Reaction Equations
    J. H. M. ten Thije Boonkkamp
    M. J. H. Anthonissen
    Journal of Scientific Computing, 2011, 46 : 47 - 70
  • [32] Well-Posedness of Time-Fractional Advection-Diffusion-Reaction Equations
    William McLean
    Kassem Mustapha
    Raed Ali
    Omar Knio
    Fractional Calculus and Applied Analysis, 2019, 22 : 918 - 944
  • [33] DISCONTINUOUS GALERKIN METHODS FOR ADVECTION-DIFFUSION-REACTION PROBLEMS
    Ayuso, Blanca
    Marini, L. Donatella
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (02) : 1391 - 1420
  • [34] WELL-POSEDNESS OF TIME-FRACTIONAL ADVECTION-DIFFUSION-REACTION EQUATIONS
    McLean, William
    Mustapha, Kassem
    Ali, Raed
    Knio, Omar
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2019, 22 (04) : 918 - 944
  • [35] Adaptive numerical solutions of time-fractional advection-diffusion-reaction equations
    Jannelli, Alessandra
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2022, 105
  • [36] Reformulations for general advection-diffusion-reaction equations and locally implicit ADER schemes
    Montecinos, Gino I.
    Toro, Eleuterio F.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 275 : 415 - 442
  • [37] Enhanced Unconditionally Positive Finite Difference Method for Advection-Diffusion-Reaction Equations
    Ndou, Ndivhuwo
    Dlamini, Phumlani
    Jacobs, Byron Alexander
    MATHEMATICS, 2022, 10 (15)
  • [38] A parameter robust Petrov-Galerkin scheme for advection-diffusion-reaction equations
    de Falco, Carlo
    O'Riordan, Eugene
    NUMERICAL ALGORITHMS, 2011, 56 (01) : 107 - 127
  • [39] Wavelet-Fourier CORSING techniques for multidimensional advection-diffusion-reaction equations
    Brugiapaglia, S.
    Micheletti, S.
    Nobile, F.
    Perotto, S.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2021, 41 (04) : 2744 - 2781
  • [40] The Finite Volume-Complete Flux Scheme for Advection-Diffusion-Reaction Equations
    Boonkkamp, J. H. M. Ten Thije
    Anthonissen, M. J. H.
    JOURNAL OF SCIENTIFIC COMPUTING, 2011, 46 (01) : 47 - 70