Fractal-fractional advection-diffusion-reaction equations by Ritz approximation approach

被引:5
|
作者
Nasrudin, Farah Suraya Md [1 ,2 ]
Phang, Chang [1 ]
Kanwal, Afshan [3 ]
机构
[1] Univ Tun Hussein Onn Malaysia, Fac Appl Sci & Technol, Pagoh, Malaysia
[2] Univ Teknol MARA, Coll Comp Informat & Media, Math Sci Studies, Johor Branch, Segamat Campus, Shah Alam, Malaysia
[3] COMSATS Univ Islamabad, Sahiwal Campus,COMSATS Rd off GT Rd, Sahiwal, Pakistan
来源
OPEN PHYSICS | 2023年 / 21卷 / 01期
关键词
fractal-fractional derivative; Ritz approximation; satisfier function; fractional advection-diffusion-reaction equations; two variables-shifted Legendre polynomials; GALERKIN METHOD; BOUNDARY-CONDITIONS; NUMERICAL-SOLUTION; WAVELETS;
D O I
10.1515/phys-2022-0221
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this work, we propose the Ritz approximation approach with a satisfier function to solve fractal-fractional advection-diffusion-reaction equations. The approach reduces fractal-fractional advection-diffusion-reaction equations to a system of algebraic equations; hence, the system can be solved easily to obtain the numerical solution for fractal-fractional advection-diffusion-reaction equations. With only a few terms of two variables-shifted Legendre polynomials, this method is capable of providing high-accuracy solution for fractal-fractional advection-diffusion-reaction equations. Numerical examples show that this approach is comparable with the existing numerical method. The proposed approach can reduce the number of terms of polynomials needed for numerical simulation to obtain the solution for fractal-fractional advection-diffusion-reaction equations.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Optimal control problem of advection-diffusion-reaction equation of kind fractal-fractional applying shifted Jacobi polynomials
    Shojaeizadeh, T.
    Mahmoudi, M.
    Darehmiraki, M.
    CHAOS SOLITONS & FRACTALS, 2021, 143
  • [2] A spectral Galerkin approximation of optimal control problem governed by fractional advection-diffusion-reaction equations
    Wang, Fangyuan
    Zhang, Zhongqiang
    Zhou, Zhaojie
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 386
  • [3] Regularity theory for time-fractional advection-diffusion-reaction equations
    McLean, William
    Mustapha, Kassem
    Ali, Raed
    Knio, Omar M.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 79 (04) : 947 - 961
  • [4] Numerical Solutions of Space-Fractional Advection-Diffusion-Reaction Equations
    Salomoni, Valentina Anna Lia
    De Marchi, Nico
    FRACTAL AND FRACTIONAL, 2022, 6 (01)
  • [5] NUMERICAL TREATMENT OF THE SPACE-TIME FRACTAL-FRACTIONAL MODEL OF NONLINEAR ADVECTION-DIFFUSION-REACTION EQUATION THROUGH THE BERNSTEIN POLYNOMIALS
    Heydari, M. H.
    Avazzadeh, Z.
    Yang, Y.
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2020, 28 (08)
  • [6] Nonstandard methods for advection-diffusion-reaction equations
    Kojouharov, HV
    Chen, BM
    APPLICATIONS OF NONSTANDARD FINITE DIFFERENCE SCHEMES, 2000, : 55 - 108
  • [7] Well-Posedness of Time-Fractional Advection-Diffusion-Reaction Equations
    William McLean
    Kassem Mustapha
    Raed Ali
    Omar Knio
    Fractional Calculus and Applied Analysis, 2019, 22 : 918 - 944
  • [8] WELL-POSEDNESS OF TIME-FRACTIONAL ADVECTION-DIFFUSION-REACTION EQUATIONS
    McLean, William
    Mustapha, Kassem
    Ali, Raed
    Knio, Omar
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2019, 22 (04) : 918 - 944
  • [9] Adaptive numerical solutions of time-fractional advection-diffusion-reaction equations
    Jannelli, Alessandra
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2022, 105
  • [10] Numerical simulation of the fractal-fractional reaction diffusion equations with general nonlinear
    Saad, Khaled M.
    Alqhtani, Manal
    AIMS MATHEMATICS, 2021, 6 (04): : 3788 - 3804