Fractal-fractional advection-diffusion-reaction equations by Ritz approximation approach

被引:5
|
作者
Nasrudin, Farah Suraya Md [1 ,2 ]
Phang, Chang [1 ]
Kanwal, Afshan [3 ]
机构
[1] Univ Tun Hussein Onn Malaysia, Fac Appl Sci & Technol, Pagoh, Malaysia
[2] Univ Teknol MARA, Coll Comp Informat & Media, Math Sci Studies, Johor Branch, Segamat Campus, Shah Alam, Malaysia
[3] COMSATS Univ Islamabad, Sahiwal Campus,COMSATS Rd off GT Rd, Sahiwal, Pakistan
来源
OPEN PHYSICS | 2023年 / 21卷 / 01期
关键词
fractal-fractional derivative; Ritz approximation; satisfier function; fractional advection-diffusion-reaction equations; two variables-shifted Legendre polynomials; GALERKIN METHOD; BOUNDARY-CONDITIONS; NUMERICAL-SOLUTION; WAVELETS;
D O I
10.1515/phys-2022-0221
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this work, we propose the Ritz approximation approach with a satisfier function to solve fractal-fractional advection-diffusion-reaction equations. The approach reduces fractal-fractional advection-diffusion-reaction equations to a system of algebraic equations; hence, the system can be solved easily to obtain the numerical solution for fractal-fractional advection-diffusion-reaction equations. With only a few terms of two variables-shifted Legendre polynomials, this method is capable of providing high-accuracy solution for fractal-fractional advection-diffusion-reaction equations. Numerical examples show that this approach is comparable with the existing numerical method. The proposed approach can reduce the number of terms of polynomials needed for numerical simulation to obtain the solution for fractal-fractional advection-diffusion-reaction equations.
引用
收藏
页数:8
相关论文
共 50 条