Comparison of Parameter Identification Techniques

被引:3
|
作者
Eder, Rafael [1 ]
Zehetner, Christian [1 ]
Kunze, Wolfgang [2 ]
机构
[1] Linz Ctr Mechatron GmbH, A-4040 Linz, Austria
[2] Salvagnini Maschinenbau GmbH, A-4482 Ennsdorf, Austria
关键词
D O I
10.1051/matecconf/20167009007
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Model-based control of mechatronic systems requires excellent knowledge about the physical behavior of each component. For several types of components of a system, e.g. mechanical or electrical ones, the dynamic behavior can be described by means of a mathematic model consisting of a set of differential equations, difference equations and/or algebraic constraint equations. The knowledge of a realistic mathematic model and its parameter values is essential to represent the behaviour of a mechatronic system. Frequently it is hard or impossible to obtain all required values of the model parameters from the producer, so an appropriate parameter estimation technique is required to compute missing parameters. A manifold of parameter identification techniques can be found in the literature, but their suitability depends on the mathematic model. Previous work dealt with the automatic assembly of mathematical models of serial and parallel robots with drives and controllers within the dynamic multibody simulation code HOTINT as fully-fledged mechatronic simulation. Several parameters of such robot models were identified successfully by our embedded algorithm. The present work proposes an improved version of the identification algorithm with higher performance. The quality of the identified parameter values and the computation effort are compared with another standard technique.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Experimental comparison of ultrasonic techniques to determine the nonlinearity parameter beta
    Hurley, DC
    Yost, WT
    Boltz, ES
    Fortunko, CM
    1996 IEEE ULTRASONICS SYMPOSIUM, PROCEEDINGS, VOLS 1 AND 2, 1996, : 495 - 498
  • [42] A comparison of three techniques to determine the nonlinear ultrasonic parameter beta
    Hurley, DC
    Yost, WT
    Boltz, ES
    Fortunko, CM
    REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION, VOLS 16A AND 16B, 1997, 16 : 1383 - 1390
  • [43] A comparison of Weibull parameter estimation techniques in small sample inspection
    Abughazaleh, TA
    O'Sullivan, JM
    McAndrew, IR
    ADVANCES IN MANUFACTURING TECHNOLOGY-XVI, 2001, : 547 - 552
  • [44] COMPARISON OF MODAL PARAMETER ESTIMATION TECHNIQUES FOR EXPERIMENTAL MODAL ANALYSIS
    Ondra, V.
    Losak, P.
    ENGINEERING MECHANICS 2014, 2014, : 460 - 463
  • [45] Soft computing techniques in parameter identification and probabilistic seismic analysis of structures
    Tsompanakis, Y.
    Lagaros, N. D.
    Stavroulakis, G. E.
    ADVANCES IN ENGINEERING SOFTWARE, 2008, 39 (07) : 612 - 624
  • [46] Inverse analysis techniques for parameter identification in simulation of excavation support systems
    Rechea, C.
    Levasseur, S.
    Finno, R.
    COMPUTERS AND GEOTECHNICS, 2008, 35 (03) : 331 - 345
  • [47] Parameter identification of chaotic optical systems based on intelligent optimization techniques
    Ye, Meiyng
    Wang, Xiaodong
    NONLINEAR OPTICS: TECHNOLOGIES AND APPLICATIONS, 2008, 6839
  • [48] Stochastic subspace techniques applied to parameter identification of civil engineering structures
    Peeters, B
    deRoeck, G
    Pollet, T
    Schueremans, L
    NEW ADVANCES IN MODAL SYNTHESIS OF LARGE STRUCTURES: NON-LINEAR DAMPED AND NON-DETERMINISTIC CASES, 1997, : 145 - 156
  • [49] Model parameter identification of excitation system based on a genetic algorithm techniques
    Abd-Alla, Ahmed N.
    Cheng, S. J.
    Wen, J. Y.
    Zhang, Jing
    2006 INTERNATIONAL CONFERENCE ON POWER SYSTEMS TECHNOLOGY: POWERCON, VOLS 1- 6, 2006, : 2238 - 2242
  • [50] Material parameter identification from machining simulations using inverse techniques
    Shrot, Aviral
    Baeker, Martin
    MATERIAL FORMING - ESAFORM 2012, PTS 1 & 2, 2012, 504-506 : 1281 - 1286