Comparison of Parameter Identification Techniques

被引:3
|
作者
Eder, Rafael [1 ]
Zehetner, Christian [1 ]
Kunze, Wolfgang [2 ]
机构
[1] Linz Ctr Mechatron GmbH, A-4040 Linz, Austria
[2] Salvagnini Maschinenbau GmbH, A-4482 Ennsdorf, Austria
关键词
D O I
10.1051/matecconf/20167009007
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Model-based control of mechatronic systems requires excellent knowledge about the physical behavior of each component. For several types of components of a system, e.g. mechanical or electrical ones, the dynamic behavior can be described by means of a mathematic model consisting of a set of differential equations, difference equations and/or algebraic constraint equations. The knowledge of a realistic mathematic model and its parameter values is essential to represent the behaviour of a mechatronic system. Frequently it is hard or impossible to obtain all required values of the model parameters from the producer, so an appropriate parameter estimation technique is required to compute missing parameters. A manifold of parameter identification techniques can be found in the literature, but their suitability depends on the mathematic model. Previous work dealt with the automatic assembly of mathematical models of serial and parallel robots with drives and controllers within the dynamic multibody simulation code HOTINT as fully-fledged mechatronic simulation. Several parameters of such robot models were identified successfully by our embedded algorithm. The present work proposes an improved version of the identification algorithm with higher performance. The quality of the identified parameter values and the computation effort are compared with another standard technique.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Performance comparison of parameter estimation techniques for unidentifiable models
    Graciano, J. E.
    Mendoza, D. F.
    Le Roux, G. A. C.
    COMPUTERS & CHEMICAL ENGINEERING, 2014, 64 : 24 - 40
  • [22] Molecular biological techniques for subspecies identification: Immunological techniques a comparison
    Nixdorff, K
    MAXIMIZING THE SECURITY AND DEVELOPMENT BENEFITS FROM THE BIOLOGICAL AND TOXIN WEAPONS CONVENTION, 2002, 36 : 149 - 160
  • [23] A Review of State-of-the-art Techniques for PMSM Parameter Identification
    Ahn, Hanwoong
    Park, Hyunjong
    Kim, Changhyun
    Lee, Hyungwoo
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2020, 15 (03) : 1177 - 1187
  • [24] PARAMETER WARPING TECHNIQUES FOR AUTOMATIC IDENTIFICATION OF INDIVIDUAL VOICE PATTERNS
    VIDALON, M
    RONDON, JL
    GOMEZ, M
    MARINO, M
    QUERO, M
    ACTA CIENTIFICA VENEZOLANA, 1977, 28 : 103 - 103
  • [25] Parameter Identification for Dynamical Systems Using Optimal Control Techniques
    Schaefer, Kai
    Runge, Margareta
    Flasskamp, Kathrin
    Bueskens, Christof
    2018 EUROPEAN CONTROL CONFERENCE (ECC), 2018, : 137 - 142
  • [26] A Review of State-of-the-art Techniques for PMSM Parameter Identification
    Hanwoong Ahn
    Hyunjong Park
    Changhyun Kim
    Hyungwoo Lee
    Journal of Electrical Engineering & Technology, 2020, 15 : 1177 - 1187
  • [27] Parameter identification of nonlinear multibody systems using correlation techniques
    Schiehlen, W
    Hu, B
    IUTAM SYMPOSIUM ON NONLINEARITY AND STOCHASTIC STRUCTURAL DYNAMICS, 2001, 85 : 261 - 270
  • [28] Application of advanced optimization techniques to parameter and damage identification problems
    Toropov, V
    Yoshida, F
    PARAMETER IDENTIFICATION OF MATERIALS AND STRUCTURES, 2005, (469): : 177 - 263
  • [29] COMPARISON OF PARAMETER-IDENTIFICATION ALGORITHMS FOR FLIGHT VEHICLES
    LEE, DH
    LEE, JG
    TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, 1994, 36 (114) : 249 - 256
  • [30] A comparison of modal parameter identification tests in laboratory conditions
    Dukic, Dorde
    Anzlin, Andrej
    Hekic, Doron
    Bohinc, Uros
    Kosic, Mirko
    EUROPEAN ASSOCIATION ON QUALITY CONTROL OF BRIDGES AND STRUCTURES, EUROSTRUCT 2023, VOL 6, ISS 5, 2023, : 315 - 321