Eigenvalues of Killing Tensors and Separable Webs on Riemannian and Pseudo-Riemannian Manifolds

被引:7
|
作者
Chanu, Claudia [1 ]
Rastelli, Giovanni [1 ]
机构
[1] Univ Turin, Dipartimento Matemat, I-10123 Turin, Italy
关键词
variable separation; Hamilton-Jacobi equation; Killing tensors; (pseudo-)Riemannian manifolds;
D O I
10.3842/SIGMA.2007.021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a n-dimensional Riemannian manifold of arbitrary signature, we illustrate an algebraic method for constructing the coordinate webs separating the geodesic Hamilton Jacobi equation by means of the eigenvalues of m <= n Killing two-tensors. Moreover, from the analysis of the eigenvalues, information about the possible symmetries of the web foliations arises. Three cases are examined: the orthogonal separation, the general separation, including non-orthogonal and isotropic coordinates, and the conformal separation, where Killing tensors are replaced by conformal Killing tensors. The method is illustrated by several examples and an application to the L-systems is provided.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] A New Approach on Helices in Pseudo-Riemannian Manifolds
    Ziplar, Evren
    Yayli, Yusuf
    Gok, Ismail
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [42] Parallel pure spinors on pseudo-Riemannian manifolds
    Kath, I
    GEOMETRY AND TOPOLOGY OF SUBMANIFOLDS X: DIFFERENTIAL GEOMETRY IN HONOR OF PROF S.S. CHERN, 2000, : 87 - 103
  • [43] Pseudo-Riemannian manifolds modelled on symmetric spaces
    Dusek, Zdenek
    Kowalski, Oldrich
    MONATSHEFTE FUR MATHEMATIK, 2012, 165 (3-4): : 319 - 326
  • [44] Indefinite Kasparov Modules and Pseudo-Riemannian Manifolds
    van den Dungen, Koen
    Rennie, Adam
    ANNALES HENRI POINCARE, 2016, 17 (11): : 3255 - 3286
  • [45] Parallel spinors on pseudo-Riemannian spinc manifolds
    Ikemakhen, Aziz
    JOURNAL OF GEOMETRY AND PHYSICS, 2006, 56 (09) : 1473 - 1483
  • [46] Complete curvature homogeneous pseudo-Riemannian manifolds
    Gilkey, P
    Nikcevic, S
    CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (15) : 3755 - 3770
  • [47] On the duality principle in pseudo-Riemannian Osserman manifolds
    Andrejic, V.
    Rakic, Z.
    JOURNAL OF GEOMETRY AND PHYSICS, 2007, 57 (10) : 2158 - 2166
  • [48] Solitons on pseudo-Riemannian manifolds: Stability and motion
    Stuart, DMA
    ELECTRONIC RESEARCH ANNOUNCEMENTS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 6 : 75 - 89
  • [49] Directed Graph Embeddings in Pseudo-Riemannian Manifolds
    Sim, Aaron
    Wiatrak, Maciej
    Brayne, Angus
    Creed, Paidi
    Paliwal, Saee
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [50] SOME HARMONIC MAPS ON PSEUDO-RIEMANNIAN MANIFOLDS
    WHITMAN, AP
    KNILL, RJ
    STOEGER, WR
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1986, 25 (10) : 1139 - 1153