On the duality principle in pseudo-Riemannian Osserman manifolds

被引:12
|
作者
Andrejic, V. [1 ]
Rakic, Z. [1 ]
机构
[1] Univ Belgrade, Fac Math, Belgrade 11001, Serbia
关键词
pseudo-Riemannian manifold; Jacobi operator; pointwise Osserman manifold; Osserman algebraic curvature tensor; duality principle;
D O I
10.1016/j.geomphys.2007.06.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Here we give a natural extension of the duality principle for the curvature tensor of pointwise pseudo-Riemannian Osserman manifolds. We proved that this extended duality principle holds under certain additional assumptions. Also, it is proved that duality principle holds for every four-dimensional Osserman manifold. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:2158 / 2166
页数:9
相关论文
共 50 条
  • [1] Nonsymmetric Osserman pseudo-Riemannian manifolds
    Garcia-Rio, E
    Vazquez-Abal, ME
    Vazquez-Lorenzo, R
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (09) : 2771 - 2778
  • [2] Szabo Osserman IP pseudo-riemannian manifolds
    Gilkey, PB
    Ivanova, R
    Zhang, T
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2003, 62 (3-4): : 387 - 401
  • [3] Higher-order Jordan Osserman pseudo-Riemannian manifolds
    Gilkey, PB
    Ivanova, R
    Zhang, T
    CLASSICAL AND QUANTUM GRAVITY, 2002, 19 (17) : 4543 - 4551
  • [4] Curvature homogeneous spacelike Jordan Osserman pseudo-Riemannian manifolds
    Gilkey, P
    Nikcevic, S
    CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (02) : 497 - 507
  • [5] Osserman pseudo-Riemannian manifolds of signature (2,2)
    Blazic, N
    Bokan, N
    Rakic, Z
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 2001, 71 : 367 - 395
  • [6] On duality principle in Osserman manifolds
    Rakic, Z
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1999, 296 (1-3) : 183 - 189
  • [7] On duality principle in Osserman manifolds
    Rakic, Zoran
    Linear Algebra and Its Applications, 296 (01): : 183 - 189
  • [8] Pseudo-Riemannian manifolds
    Girbau J.
    Bruna L.
    Progress in Mathematical Physics, 2010, 58 : 1 - 17
  • [9] DUALITY PRINCIPLE AND SPECIAL OSSERMAN MANIFOLDS
    Andrejic, Vladica
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2013, 94 (108): : 197 - 204
  • [10] Higher order Osserman pseudo-Riemannian manifolds of neutral signature (2,2)
    Sterbeti, Catalin
    BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2005, 10 (01): : 175 - 178