On the duality principle in pseudo-Riemannian Osserman manifolds

被引:12
|
作者
Andrejic, V. [1 ]
Rakic, Z. [1 ]
机构
[1] Univ Belgrade, Fac Math, Belgrade 11001, Serbia
关键词
pseudo-Riemannian manifold; Jacobi operator; pointwise Osserman manifold; Osserman algebraic curvature tensor; duality principle;
D O I
10.1016/j.geomphys.2007.06.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Here we give a natural extension of the duality principle for the curvature tensor of pointwise pseudo-Riemannian Osserman manifolds. We proved that this extended duality principle holds under certain additional assumptions. Also, it is proved that duality principle holds for every four-dimensional Osserman manifold. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:2158 / 2166
页数:9
相关论文
共 50 条
  • [31] Biharmonic submanifolds of pseudo-Riemannian manifolds
    Dong, Yuxin
    Ou, Ye-Lin
    JOURNAL OF GEOMETRY AND PHYSICS, 2017, 112 : 252 - 262
  • [32] Curvature measures of pseudo-Riemannian manifolds
    Bernig, Andreas
    Faifman, Dmitry
    Solanes, Gil
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2022, 2022 (788): : 77 - 127
  • [33] ON MAXIMAL SUBMANIFOLDS IN PSEUDO-RIEMANNIAN MANIFOLDS
    SHEN, YB
    CHINESE SCIENCE BULLETIN, 1990, 35 (22): : 1932 - 1933
  • [34] Pseudo-Riemannian Jacobi-Videv manifolds
    Gilkey, P.
    Nikcevic, S.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2007, 4 (05) : 727 - 738
  • [35] INVARIANT COEFFICIENT OPERATORS ON PSEUDO-RIEMANNIAN MANIFOLDS
    BABBITT, D
    JOURNAL OF MATHEMATICS AND MECHANICS, 1966, 15 (04): : 643 - &
  • [36] PSEUDO-RIEMANNIAN MANIFOLDS WITH TOTALLY GEODESIC BISECTORS
    BEEM, JK
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (01): : A205 - A205
  • [37] Pseudo-Riemannian Manifolds with Commuting Jacobi Operators
    Brozos-Vázquez M.
    Gilkey P.
    Rendiconti del Circolo Matematico di Palermo, 2006, 55 (2) : 163 - 174
  • [38] Indefinite Kasparov Modules and Pseudo-Riemannian Manifolds
    Koen van den Dungen
    Adam Rennie
    Annales Henri Poincaré, 2016, 17 : 3255 - 3286
  • [39] Note on the holonomy groups of pseudo-Riemannian manifolds
    A. S. Galaev
    Mathematical Notes, 2013, 93 : 810 - 815
  • [40] Cones over pseudo-Riemannian manifolds and their holonomy
    Alekseevsky, D. V.
    Cortes, V.
    Galaev, A. S.
    Leistner, T.
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2009, 635 : 23 - 69