Eigenvalues of Killing Tensors and Separable Webs on Riemannian and Pseudo-Riemannian Manifolds

被引:7
|
作者
Chanu, Claudia [1 ]
Rastelli, Giovanni [1 ]
机构
[1] Univ Turin, Dipartimento Matemat, I-10123 Turin, Italy
关键词
variable separation; Hamilton-Jacobi equation; Killing tensors; (pseudo-)Riemannian manifolds;
D O I
10.3842/SIGMA.2007.021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a n-dimensional Riemannian manifold of arbitrary signature, we illustrate an algebraic method for constructing the coordinate webs separating the geodesic Hamilton Jacobi equation by means of the eigenvalues of m <= n Killing two-tensors. Moreover, from the analysis of the eigenvalues, information about the possible symmetries of the web foliations arises. Three cases are examined: the orthogonal separation, the general separation, including non-orthogonal and isotropic coordinates, and the conformal separation, where Killing tensors are replaced by conformal Killing tensors. The method is illustrated by several examples and an application to the L-systems is provided.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Pseudo-Riemannian Manifolds with Commuting Jacobi Operators
    Brozos-Vázquez M.
    Gilkey P.
    Rendiconti del Circolo Matematico di Palermo, 2006, 55 (2) : 163 - 174
  • [32] Indefinite Kasparov Modules and Pseudo-Riemannian Manifolds
    Koen van den Dungen
    Adam Rennie
    Annales Henri Poincaré, 2016, 17 : 3255 - 3286
  • [33] Note on the holonomy groups of pseudo-Riemannian manifolds
    A. S. Galaev
    Mathematical Notes, 2013, 93 : 810 - 815
  • [34] ON THE BIHARMONICITY OF VECTOR FIELDS ON PSEUDO-RIEMANNIAN MANIFOLDS
    Alem, Amina
    Kacimi, Bouazza
    Ozkan, Mustafa
    HONAM MATHEMATICAL JOURNAL, 2023, 45 (02): : 300 - 315
  • [35] SOLITON EXCITATIONS IN TERMS OF PSEUDO-RIEMANNIAN MANIFOLDS
    WIATROWSKI, G
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1985, 129 (02): : 607 - 614
  • [36] PSEUDO-RIEMANNIAN MANIFOLDS WITH TOTALLY GEODESIC BISECTORS
    BEEM, JK
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 49 (01) : 212 - 215
  • [37] Cones over pseudo-Riemannian manifolds and their holonomy
    Alekseevsky, D. V.
    Cortes, V.
    Galaev, A. S.
    Leistner, T.
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2009, 635 : 23 - 69
  • [38] FLAT PSEUDO-RIEMANNIAN STRUCTURES OF COMPACT MANIFOLDS
    FURNESS, P
    FEDIDA, E
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1978, 286 (03): : 169 - 171
  • [39] Pseudo-Riemannian manifolds with recurrent spinor fields
    Galaev, A. S.
    SIBERIAN MATHEMATICAL JOURNAL, 2013, 54 (04) : 604 - 613
  • [40] Pseudo-Riemannian manifolds with simple Jacobi operators
    Bonome, A
    Castro, R
    García-Río, E
    Hervella, L
    Vázquez-Lorenzo, R
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2002, 54 (04) : 847 - 875