Multiparameter transmission estimation at the quantum Cramer-Rao limit on a cloud quantum computer

被引:3
|
作者
Goldberg, Aaron Z. [1 ,2 ]
Heshami, Khabat [1 ,2 ,3 ]
机构
[1] Natl Res Council Canada, 100 Sussex Dr, Ottawa, ON K1N 5A2, Canada
[2] Univ Ottawa, Dept Phys, Adv Res Complex, 25 Templeton St, Ottawa, ON K1N 6N5, Canada
[3] Univ Calgary, Inst Quantum Sci & Technol, Dept Phys & Astron, Calgary, AB T2N1N4, Canada
来源
NEW JOURNAL OF PHYSICS | 2022年 / 24卷 / 11期
基金
加拿大自然科学与工程研究理事会;
关键词
quantum metrology; estimation theory; spectroscopy; quantum information; quantum computers; EXPERIMENTAL REALIZATION; NOISE; REDUCTION;
D O I
10.1088/1367-2630/aca21c
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Estimating transmission or loss is at the heart of spectroscopy. To achieve the ultimate quantum resolution limit, one must use probe states with definite photon number and detectors capable of distinguishing the number of photons impinging thereon. In practice, one can outperform classical limits using two-mode squeezed light, which can be used to herald definite-photon-number probes, but the heralding is not guaranteed to produce the desired probes when there is loss in the heralding arm or its detector is imperfect. We show that this paradigm can be used to simultaneously measure distinct loss parameters in both modes of the squeezed light, with attainable quantum advantages. We demonstrate this protocol on Xanadu's X8 chip, accessed via the cloud, building photon-number probability distributions from 10(6) shots and performing maximum likelihood estimation (MLE) on these distributions 10(3) independent times. Because pump light may be lost before the squeezing occurs, we also simultaneously estimate the actual input power, using the theory of nuisance parameters. MLE converges to estimate the transmission amplitudes in X8's eight modes to be 0.392 02(6), 0.307 06(8), 0.369 37(6), 0.287 30(9), 0.382 06(6), 0.304 41(8), 0.372 29(6), and 0.286 21(8) and the squeezing parameters, which are proxies for effective input coherent-state amplitudes, their losses, and their nonlinear interaction times, to be 1.3000(2), 1.3238(3), 1.2666(2), and 1.3425(3); all of these uncertainties are within a factor of two of the quantum Cramer-Rao bound. This study provides crucial insight into the intersection of quantum multiparameter estimation theory, MLE convergence, and the characterization and performance of real quantum devices.
引用
收藏
页数:26
相关论文
共 50 条
  • [41] Cramer-Rao bound for bearing estimation with bias correction
    Xu, Wen
    2007 OCEANS, VOLS 1-5, 2007, : 1894 - 1898
  • [42] The modified Cramer-Rao bound in vector parameter estimation
    Gini, F
    Reggiannini, R
    Mengali, U
    IEEE TRANSACTIONS ON COMMUNICATIONS, 1998, 46 (01) : 52 - 60
  • [43] THE CRAMER-RAO BOUND FOR ESTIMATION-AFTER-SELECTION
    Routtenberg, Tirza
    Tong, Lang
    2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [44] CRAMER-RAO BOUNDS AND ESTIMATION OF THE PARAMETERS OF THE GUMBEL DISTRIBUTION
    CORSINI, G
    GINI, F
    GRECO, MV
    VERRAZZANI, L
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1995, 31 (03) : 1202 - 1204
  • [45] Cramer-Rao lower bound for harmonic and subharmonic estimation
    Chen, Zhili
    Nowrouzian, Behrouz
    Zarowski, Christopher J.
    2006 IEEE International Conference on Acoustics, Speech and Signal Processing, Vols 1-13, 2006, : 2532 - 2535
  • [46] A CONSTRAINED HYBRID CRAMER-RAO BOUND FOR PARAMETER ESTIMATION
    Ren, Chengfang
    Le Kernec, Julien
    Galy, Jerome
    Chaumette, Eric
    Larzabal, Pascal
    Renaux, Alexandre
    2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 3472 - 3476
  • [47] CRAMER-RAO BOUNDS FOR THE ESTIMATION OF MEANS IN A CLUSTERING PROBLEM
    PERLOVSKY, LI
    PATTERN RECOGNITION LETTERS, 1988, 8 (01) : 1 - 3
  • [48] Intrinsic Cramer-Rao bounds and subspace estimation accuracy
    Smith, ST
    SAM 2000: PROCEEDINGS OF THE 2000 IEEE SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP, 2000, : 489 - 493
  • [49] Cramer-Rao bounds for circadian rhythm parameter estimation
    Zarowski, C
    Kropyvnytskyy, I
    IEEE CCEC 2002: CANADIAN CONFERENCE ON ELECTRCIAL AND COMPUTER ENGINEERING, VOLS 1-3, CONFERENCE PROCEEDINGS, 2002, : 1083 - 1086
  • [50] Linear optical quantum metrology with single photons: Experimental errors, resource counting, and quantum Cramer-Rao bounds
    Olson, Jonathan P.
    Motes, Keith R.
    Birchall, Patrick M.
    Studer, Nick M.
    LaBorde, Margarite
    Moulder, Todd
    Rohde, Peter P.
    Dowling, Jonathan P.
    PHYSICAL REVIEW A, 2017, 96 (01)