Multiparameter transmission estimation at the quantum Cramer-Rao limit on a cloud quantum computer

被引:3
|
作者
Goldberg, Aaron Z. [1 ,2 ]
Heshami, Khabat [1 ,2 ,3 ]
机构
[1] Natl Res Council Canada, 100 Sussex Dr, Ottawa, ON K1N 5A2, Canada
[2] Univ Ottawa, Dept Phys, Adv Res Complex, 25 Templeton St, Ottawa, ON K1N 6N5, Canada
[3] Univ Calgary, Inst Quantum Sci & Technol, Dept Phys & Astron, Calgary, AB T2N1N4, Canada
来源
NEW JOURNAL OF PHYSICS | 2022年 / 24卷 / 11期
基金
加拿大自然科学与工程研究理事会;
关键词
quantum metrology; estimation theory; spectroscopy; quantum information; quantum computers; EXPERIMENTAL REALIZATION; NOISE; REDUCTION;
D O I
10.1088/1367-2630/aca21c
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Estimating transmission or loss is at the heart of spectroscopy. To achieve the ultimate quantum resolution limit, one must use probe states with definite photon number and detectors capable of distinguishing the number of photons impinging thereon. In practice, one can outperform classical limits using two-mode squeezed light, which can be used to herald definite-photon-number probes, but the heralding is not guaranteed to produce the desired probes when there is loss in the heralding arm or its detector is imperfect. We show that this paradigm can be used to simultaneously measure distinct loss parameters in both modes of the squeezed light, with attainable quantum advantages. We demonstrate this protocol on Xanadu's X8 chip, accessed via the cloud, building photon-number probability distributions from 10(6) shots and performing maximum likelihood estimation (MLE) on these distributions 10(3) independent times. Because pump light may be lost before the squeezing occurs, we also simultaneously estimate the actual input power, using the theory of nuisance parameters. MLE converges to estimate the transmission amplitudes in X8's eight modes to be 0.392 02(6), 0.307 06(8), 0.369 37(6), 0.287 30(9), 0.382 06(6), 0.304 41(8), 0.372 29(6), and 0.286 21(8) and the squeezing parameters, which are proxies for effective input coherent-state amplitudes, their losses, and their nonlinear interaction times, to be 1.3000(2), 1.3238(3), 1.2666(2), and 1.3425(3); all of these uncertainties are within a factor of two of the quantum Cramer-Rao bound. This study provides crucial insight into the intersection of quantum multiparameter estimation theory, MLE convergence, and the characterization and performance of real quantum devices.
引用
收藏
页数:26
相关论文
共 50 条
  • [31] On the generalized Cramer-Rao bound for the estimation of the location
    Batalama, SN
    Kazakos, D
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1997, 45 (02) : 487 - 492
  • [32] Cramer-Rao bounds for blind multichannel estimation
    de Carvalho, E
    Cioffi, J
    Slock, D
    GLOBECOM '00: IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE, VOLS 1- 3, 2000, : 1036 - 1040
  • [33] DOPPLER FREQUENCY ESTIMATION AND THE CRAMER-RAO BOUND
    BAMLER, R
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1991, 29 (03): : 385 - 390
  • [34] Cramer-Rao bound for joint estimation problems
    Ijyas, V. P. Thafasal
    Sameer, S. M.
    ELECTRONICS LETTERS, 2013, 49 (06) : 427 - 428
  • [35] CRAMER-RAO BOUNDS FOR THE ESTIMATION OF NORMAL MIXTURES
    PERLOVSKY, LI
    PATTERN RECOGNITION LETTERS, 1989, 10 (03) : 141 - 148
  • [36] Cramer-Rao Bounds for Road Profile Estimation
    Akcay, Huseyin
    Turkay, Semiha
    2017 IEEE 3RD COLOMBIAN CONFERENCE ON AUTOMATIC CONTROL (CCAC), 2017,
  • [37] Cramer-Rao Lower Bound for Channel Estimation in a MUROS/VAMOS Downlink Transmission
    Ruder, Michael A.
    Schober, Robert
    Gerstacker, Wolfgang H.
    2011 IEEE 22ND INTERNATIONAL SYMPOSIUM ON PERSONAL INDOOR AND MOBILE RADIO COMMUNICATIONS (PIMRC), 2011, : 1433 - 1437
  • [38] Quantum Fisher information measurement and verification of the quantum Cramer-Rao bound in a solid-state qubit
    Yu, Min
    Liu, Yu
    Yang, Pengcheng
    Gong, Musang
    Cao, Qingyun
    Zhang, Shaoliang
    Liu, Haibin
    Heyl, Markus
    Ozawa, Tomoki
    Goldman, Nathan
    Cai, Jianming
    NPJ QUANTUM INFORMATION, 2022, 8 (01)
  • [39] Quantum Cramer-Rao Bound for a Massless Scalar Field in de Sitter Space
    Rotondo, Marcello
    Nambu, Yasusada
    UNIVERSE, 2017, 3 (04)
  • [40] The Cramer-Rao bound for the estimation of noisy phase signals
    Zoubir, AM
    Taleb, A
    2001 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-VI, PROCEEDINGS: VOL I: SPEECH PROCESSING 1; VOL II: SPEECH PROCESSING 2 IND TECHNOL TRACK DESIGN & IMPLEMENTATION OF SIGNAL PROCESSING SYSTEMS NEURALNETWORKS FOR SIGNAL PROCESSING; VOL III: IMAGE & MULTIDIMENSIONAL SIGNAL PROCESSING MULTIMEDIA SIGNAL PROCESSING - VOL IV: SIGNAL PROCESSING FOR COMMUNICATIONS; VOL V: SIGNAL PROCESSING EDUCATION SENSOR ARRAY & MULTICHANNEL SIGNAL PROCESSING AUDIO & ELECTROACOUSTICS; VOL VI: SIGNAL PROCESSING THEORY & METHODS STUDENT FORUM, 2001, : 3101 - 3104