Multiparameter transmission estimation at the quantum Cramer-Rao limit on a cloud quantum computer

被引:3
|
作者
Goldberg, Aaron Z. [1 ,2 ]
Heshami, Khabat [1 ,2 ,3 ]
机构
[1] Natl Res Council Canada, 100 Sussex Dr, Ottawa, ON K1N 5A2, Canada
[2] Univ Ottawa, Dept Phys, Adv Res Complex, 25 Templeton St, Ottawa, ON K1N 6N5, Canada
[3] Univ Calgary, Inst Quantum Sci & Technol, Dept Phys & Astron, Calgary, AB T2N1N4, Canada
来源
NEW JOURNAL OF PHYSICS | 2022年 / 24卷 / 11期
基金
加拿大自然科学与工程研究理事会;
关键词
quantum metrology; estimation theory; spectroscopy; quantum information; quantum computers; EXPERIMENTAL REALIZATION; NOISE; REDUCTION;
D O I
10.1088/1367-2630/aca21c
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Estimating transmission or loss is at the heart of spectroscopy. To achieve the ultimate quantum resolution limit, one must use probe states with definite photon number and detectors capable of distinguishing the number of photons impinging thereon. In practice, one can outperform classical limits using two-mode squeezed light, which can be used to herald definite-photon-number probes, but the heralding is not guaranteed to produce the desired probes when there is loss in the heralding arm or its detector is imperfect. We show that this paradigm can be used to simultaneously measure distinct loss parameters in both modes of the squeezed light, with attainable quantum advantages. We demonstrate this protocol on Xanadu's X8 chip, accessed via the cloud, building photon-number probability distributions from 10(6) shots and performing maximum likelihood estimation (MLE) on these distributions 10(3) independent times. Because pump light may be lost before the squeezing occurs, we also simultaneously estimate the actual input power, using the theory of nuisance parameters. MLE converges to estimate the transmission amplitudes in X8's eight modes to be 0.392 02(6), 0.307 06(8), 0.369 37(6), 0.287 30(9), 0.382 06(6), 0.304 41(8), 0.372 29(6), and 0.286 21(8) and the squeezing parameters, which are proxies for effective input coherent-state amplitudes, their losses, and their nonlinear interaction times, to be 1.3000(2), 1.3238(3), 1.2666(2), and 1.3425(3); all of these uncertainties are within a factor of two of the quantum Cramer-Rao bound. This study provides crucial insight into the intersection of quantum multiparameter estimation theory, MLE convergence, and the characterization and performance of real quantum devices.
引用
收藏
页数:26
相关论文
共 50 条
  • [21] Quantum Cramer-Rao bound for quantum statistical models with parameter-dependent rank
    Ye, Yating
    Lu, Xiao-Ming
    PHYSICAL REVIEW A, 2022, 106 (02)
  • [22] Nonlinear phase estimation: Parity measurement approaches the quantum Cramer-Rao bound for coherent states
    Zhang, Jian-Dong
    Zhang, Zi-Jing
    Cen, Long-Zhu
    Hu, Jun-Yan
    Zhao, Yuan
    PHYSICAL REVIEW A, 2019, 99 (02)
  • [23] Generalized Cramer-Rao relations for non-relativistic quantum systems
    Dehesa, J. S.
    Plastino, A. R.
    Sanchez-Moreno, P.
    Vignat, C.
    APPLIED MATHEMATICS LETTERS, 2012, 25 (11) : 1689 - 1694
  • [24] Hierarchies of Frequentist Bounds for Quantum Metrology: From Cramer-Rao to Barankin
    Gessner, Manuel
    Smerzi, Augusto
    PHYSICAL REVIEW LETTERS, 2023, 130 (26)
  • [25] The categorical foundations of quantum information theory: Categories and the Cramer-Rao inequality
    Ciaglia, F. M.
    Di Cosmo, F.
    Gonzalez-Bravo, L.
    Ibort, A.
    Marmo, G.
    MODERN PHYSICS LETTERS A, 2023, 38 (16-17)
  • [26] Quantum enhanced metrology of Hamiltonian parameters beyond the Cramer-Rao bound
    Seveso, Luigi
    Paris, Matteo G. A.
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2020, 18 (03)
  • [27] Diagnosing Imperfections in Quantum Sensors via Generalized Cramer-Rao Bounds
    Cimini, Valeria
    Genoni, Marco G.
    Gianani, Ilaria
    Spagnolo, Nicolo
    Sciarrino, Fabio
    Barbieri, Marco
    PHYSICAL REVIEW APPLIED, 2020, 13 (02):
  • [28] On the Cramer-Rao Bound of Autoregressive Estimation in Noise
    Weruaga, Luis
    Melko, O. Michael
    2011 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2011, : 373 - 376
  • [29] Cramer-Rao bounds for MIMO channel estimation
    Berriche, L
    Abed-Meraim, K
    Belfiore, JC
    2004 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL IV, PROCEEDINGS: AUDIO AND ELECTROACOUSTICS SIGNAL PROCESSING FOR COMMUNICATIONS, 2004, : 397 - 400
  • [30] Cramer-Rao Bounds for Compressive Frequency Estimation
    Chen, Xushan
    Zhang, Xiongwei
    Yang, Jibin
    Sun, Meng
    Yang, Weiwei
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2015, E98A (03): : 874 - 877