Multiparameter transmission estimation at the quantum Cramer-Rao limit on a cloud quantum computer

被引:3
|
作者
Goldberg, Aaron Z. [1 ,2 ]
Heshami, Khabat [1 ,2 ,3 ]
机构
[1] Natl Res Council Canada, 100 Sussex Dr, Ottawa, ON K1N 5A2, Canada
[2] Univ Ottawa, Dept Phys, Adv Res Complex, 25 Templeton St, Ottawa, ON K1N 6N5, Canada
[3] Univ Calgary, Inst Quantum Sci & Technol, Dept Phys & Astron, Calgary, AB T2N1N4, Canada
来源
NEW JOURNAL OF PHYSICS | 2022年 / 24卷 / 11期
基金
加拿大自然科学与工程研究理事会;
关键词
quantum metrology; estimation theory; spectroscopy; quantum information; quantum computers; EXPERIMENTAL REALIZATION; NOISE; REDUCTION;
D O I
10.1088/1367-2630/aca21c
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Estimating transmission or loss is at the heart of spectroscopy. To achieve the ultimate quantum resolution limit, one must use probe states with definite photon number and detectors capable of distinguishing the number of photons impinging thereon. In practice, one can outperform classical limits using two-mode squeezed light, which can be used to herald definite-photon-number probes, but the heralding is not guaranteed to produce the desired probes when there is loss in the heralding arm or its detector is imperfect. We show that this paradigm can be used to simultaneously measure distinct loss parameters in both modes of the squeezed light, with attainable quantum advantages. We demonstrate this protocol on Xanadu's X8 chip, accessed via the cloud, building photon-number probability distributions from 10(6) shots and performing maximum likelihood estimation (MLE) on these distributions 10(3) independent times. Because pump light may be lost before the squeezing occurs, we also simultaneously estimate the actual input power, using the theory of nuisance parameters. MLE converges to estimate the transmission amplitudes in X8's eight modes to be 0.392 02(6), 0.307 06(8), 0.369 37(6), 0.287 30(9), 0.382 06(6), 0.304 41(8), 0.372 29(6), and 0.286 21(8) and the squeezing parameters, which are proxies for effective input coherent-state amplitudes, their losses, and their nonlinear interaction times, to be 1.3000(2), 1.3238(3), 1.2666(2), and 1.3425(3); all of these uncertainties are within a factor of two of the quantum Cramer-Rao bound. This study provides crucial insight into the intersection of quantum multiparameter estimation theory, MLE convergence, and the characterization and performance of real quantum devices.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] Transmission estimation at the quantum Cramer-Rao bound with macroscopic quantum light
    Woodworth, Timothy S. S.
    Hermann-Avigliano, Carla
    Chan, Kam Wai Clifford
    Marino, Alberto M. M.
    EPJ QUANTUM TECHNOLOGY, 2022, 9 (01)
  • [2] Evaluating the Holevo Cramer-Rao Bound for Multiparameter Quantum Metrology
    Albarelli, Francesco
    Friel, Jamie F.
    Datta, Animesh
    PHYSICAL REVIEW LETTERS, 2019, 123 (20)
  • [3] Generalized-mean Cramer-Rao bounds for multiparameter quantum metrology
    Lu, Xiao-Ming
    Ma, Zhihao
    Zhang, Chengjie
    PHYSICAL REVIEW A, 2020, 101 (02)
  • [4] Quantum metrology beyond the quantum Cramer-Rao theorem
    Seveso, Luigi
    Rossi, Matteo A. C.
    Paris, Matteo G. A.
    PHYSICAL REVIEW A, 2017, 95 (01)
  • [5] Fisher Information and the Quantum Cramer-Rao Sensitivity Limit of Continuous Measurements
    Gammelmark, Soren
    Molmer, Klaus
    PHYSICAL REVIEW LETTERS, 2014, 112 (17)
  • [6] Tight Cramer-Rao type bounds for multiparameter quantum metrology through conic programming
    Hayashi, Masahito
    Ouyang, Yingkai
    QUANTUM, 2023, 7
  • [7] Quantum Cramer-Rao Bound and Parity Measurement
    Chiruvelli, Aravind
    Lee, Hwang
    ADVANCES IN PHOTONICS OF QUANTUM COMPUTING, MEMORY, AND COMMUNICATION III, 2010, 7611
  • [8] Saturability of the Quantum Cramer-Rao Bound in Multiparameter Quantum Estimation at the Single-Copy Level (vol 8, pg 376, 2024)
    Nurdin, Hendra I.
    IEEE CONTROL SYSTEMS LETTERS, 2024, 8 : 2111 - 2113
  • [9] Phase estimation at the quantum Cramer-Rao bound via parity detection
    Seshadreesan, Kaushik P.
    Kim, Sejong
    Dowling, Jonathan P.
    Lee, Hwang
    PHYSICAL REVIEW A, 2013, 87 (04)
  • [10] Measurements satisfying the quantum Cramer-Rao equality
    Luczak, Andrzej
    PHYSICAL REVIEW A, 2009, 80 (01):