Stable vortex solitons of (2+1)-dimensional cubic-quintic Gross-Pitaevskii equation with spatially inhomogeneous nonlinearities

被引:10
|
作者
Song, Xiang [1 ]
Li, Hua-Mei [1 ]
机构
[1] Zhejiang Normal Univ, Dept Phys, Jinhua 321004, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Vortex soliton; Cubic-quintic Gross-Pitaevskii equation; Anharmonic potential; Harmonic potential; BOSE-EINSTEIN CONDENSATE;
D O I
10.1016/j.physleta.2013.01.018
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Applying the similarity transformation, two classes of vortex solitons are constructed in (2 + 1)-dimensional cubic-quintic Gross-Pitaevskii equation with spatially inhomogeneous nonlinearities, including the exact ones in the anharmonic potential and numerical ones in the harmonic potential. The properties of vortex solitons which are defined by the radial quantum number n and topological charge S are studied. The linear stability analysis and numerical simulation are used to verify the stability of these vortex solitons. The results show that stable vortex solitons exist for high radial quantum number and topological charge, within some region of values of chemical potential mu. (c) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:714 / 717
页数:4
相关论文
共 50 条
  • [41] Stability limits for three-dimensional vortex solitons in the Ginzburg-Landau equation with the cubic-quintic nonlinearity
    Mihalache, D.
    Mazilu, D.
    Lederer, F.
    Leblond, H.
    Malomed, B. A.
    PHYSICAL REVIEW A, 2007, 76 (04):
  • [42] Solitons and Vortex Lattices in the Gross-Pitaevskii Equation with Spin-Orbit Coupling under Rotation
    Sakaguchi, Hidetsugu
    Umeda, Kanji
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2016, 85 (06)
  • [43] Dynamics of nonlinear waves in two-dimensional cubic-quintic nonlinear Schrodinger equation with spatially modulated nonlinearities and potentials
    Xu, Si-Liu
    Cheng, Jia-Xi
    Belic, Milivoj R.
    Hu, Zheng-Long
    Zhao, Yuan
    OPTICS EXPRESS, 2016, 24 (09): : 10066 - 10077
  • [44] Gap solitons in elongated geometries: The one-dimensional Gross-Pitaevskii equation and beyond
    Mateo, A. Munoz
    Delgado, V.
    Malomed, Boris A.
    PHYSICAL REVIEW A, 2011, 83 (05)
  • [45] STABILITY IN THE ENERGY SPACE FOR CHAINS OF SOLITONS OF THE ONE-DIMENSIONAL GROSS-PITAEVSKII EQUATION
    Bethuel, Fabrice
    Gravejat, Philippe
    Smets, Didier
    ANNALES DE L INSTITUT FOURIER, 2014, 64 (01) : 19 - 70
  • [46] Beyond Gross-Pitaevskii equation for 1D gas: Quasiparticles and solitons
    Kopycinski, Jakub
    Lebek, Maciej
    Marciniak, Maciej
    Oldziejewski, Rafal
    Gorecki, Wojciech
    Pawlowski, Krzysztof
    SCIPOST PHYSICS, 2022, 12 (01):
  • [47] Dark solitons and rouge waves for a (2+1)-dimensional Gross-Pitaevskii equation with time-varying trapping potential in the Bose-Einstein condensate
    Wu, Xiao-Yu
    Tian, Bo
    Zhen, Hui-Ling
    Liu, Lei
    Shan, Wen-Rui
    JOURNAL OF MODERN OPTICS, 2016, 63 (21) : 2332 - 2338
  • [48] Vortex dynamics for the two-dimensional non-homogeneous Gross-Pitaevskii equation
    Jerrard, Robert L.
    Smets, Didier
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2015, 14 (03) : 729 - 766
  • [49] GLOBAL WELL-POSEDNESS OF THE GROSS-PITAEVSKII AND CUBIC-QUINTIC NONLINEAR SCHRODINGER EQUATIONS WITH NON-VANISHING BOUNDARY CONDITIONS
    Killip, Rowan
    Oh, Tadahiro
    Pocovnicu, Oana
    Visan, Monica
    MATHEMATICAL RESEARCH LETTERS, 2012, 19 (05) : 969 - 986
  • [50] Nonlinear tunneling effect in the (2+1)-dimensional cubic-quintic nonlinear Schrödinger equation with variable coefficients
    C. Q. Dai
    Q. Yang
    J. D. He
    Y. Y. Wang
    The European Physical Journal D, 2011, 63 : 141 - 148