Stable vortex solitons of (2+1)-dimensional cubic-quintic Gross-Pitaevskii equation with spatially inhomogeneous nonlinearities

被引:10
|
作者
Song, Xiang [1 ]
Li, Hua-Mei [1 ]
机构
[1] Zhejiang Normal Univ, Dept Phys, Jinhua 321004, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Vortex soliton; Cubic-quintic Gross-Pitaevskii equation; Anharmonic potential; Harmonic potential; BOSE-EINSTEIN CONDENSATE;
D O I
10.1016/j.physleta.2013.01.018
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Applying the similarity transformation, two classes of vortex solitons are constructed in (2 + 1)-dimensional cubic-quintic Gross-Pitaevskii equation with spatially inhomogeneous nonlinearities, including the exact ones in the anharmonic potential and numerical ones in the harmonic potential. The properties of vortex solitons which are defined by the radial quantum number n and topological charge S are studied. The linear stability analysis and numerical simulation are used to verify the stability of these vortex solitons. The results show that stable vortex solitons exist for high radial quantum number and topological charge, within some region of values of chemical potential mu. (c) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:714 / 717
页数:4
相关论文
共 50 条
  • [31] Exact vector multipole and vortex solitons in the media with spatially modulated cubic-quintic nonlinearity
    Wang, Yue-Yue
    Chen, Liang
    Dai, Chao-Qing
    Zheng, Jun
    Fan, Yan
    NONLINEAR DYNAMICS, 2017, 90 (02) : 1269 - 1275
  • [32] (2+1)-Dimensional Analytical Solutions of the Combining Cubic-Quintic Nonlinear Schrdinger Equation
    郭爱林
    林机
    Communications in Theoretical Physics, 2012, 57 (04) : 523 - 529
  • [33] Solution of the one-dimensional spatially inhomogeneous cubic-quintic nonlinear Schrodinger equation with an external potential
    Tang, Xiao-Yan
    Shukla, Padma Kant
    PHYSICAL REVIEW A, 2007, 76 (01):
  • [34] Exact Analytical Solutions for the (2+1)-Dimensional Generalized Variable-Coefficients Gross-Pitaevskii Equation
    Jing, Jian-Chun
    Li, Biao
    CHINESE JOURNAL OF PHYSICS, 2012, 50 (03) : 413 - 424
  • [35] Exact Solutions of the Two-Dimensional Cubic-Quintic Nonlinear Schrdinger Equation with Spatially Modulated Nonlinearities
    宋祥
    李画眉
    CommunicationsinTheoreticalPhysics, 2013, 59 (03) : 290 - 294
  • [36] Stable one-dimensional dissipative solitons in complex cubic-quintic Ginzburg-Landau equation
    Aleksic, N. B.
    Pavlovic, G.
    Aleksic, B. N.
    Skarka, V.
    ACTA PHYSICA POLONICA A, 2007, 112 (05) : 941 - 947
  • [37] Stable higher-charge vortex solitons in the cubic-quintic medium with a ring potential
    Dong, Liangwei
    Fan, Mingjing
    Malomed, Boris A.
    OPTICS LETTERS, 2023, 48 (18) : 4817 - 4820
  • [38] VORTEX RING PINNING FOR THE GROSS-PITAEVSKII EQUATION IN THREE-DIMENSIONAL SPACE
    Wei, Juncheng
    Yang, Jun
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2012, 44 (06) : 3991 - 4047
  • [39] Exact Solutions to the Two-Dimensional Spatially Inhomogeneous Cubic-Quintic Nonlinear Schrodinger Equation with an External Potential
    Chen Jun-Chao
    Zhang Xiao-Fei
    Li Biao
    Chen Yong
    CHINESE PHYSICS LETTERS, 2012, 29 (07)
  • [40] Nonlinear tunneling effect in the (2+1)-dimensional cubic-quintic nonlinear Schrodinger equation with variable coefficients
    Dai, C. Q.
    Yang, Q.
    He, J. D.
    Wang, Y. Y.
    EUROPEAN PHYSICAL JOURNAL D, 2011, 63 (01): : 141 - 148