Stable vortex solitons of (2+1)-dimensional cubic-quintic Gross-Pitaevskii equation with spatially inhomogeneous nonlinearities

被引:10
|
作者
Song, Xiang [1 ]
Li, Hua-Mei [1 ]
机构
[1] Zhejiang Normal Univ, Dept Phys, Jinhua 321004, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Vortex soliton; Cubic-quintic Gross-Pitaevskii equation; Anharmonic potential; Harmonic potential; BOSE-EINSTEIN CONDENSATE;
D O I
10.1016/j.physleta.2013.01.018
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Applying the similarity transformation, two classes of vortex solitons are constructed in (2 + 1)-dimensional cubic-quintic Gross-Pitaevskii equation with spatially inhomogeneous nonlinearities, including the exact ones in the anharmonic potential and numerical ones in the harmonic potential. The properties of vortex solitons which are defined by the radial quantum number n and topological charge S are studied. The linear stability analysis and numerical simulation are used to verify the stability of these vortex solitons. The results show that stable vortex solitons exist for high radial quantum number and topological charge, within some region of values of chemical potential mu. (c) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:714 / 717
页数:4
相关论文
共 50 条
  • [21] Leapfrogging Vortex Rings for the Three Dimensional Gross-Pitaevskii Equation
    Jerrard R.L.
    Smets D.
    Annals of PDE, 2018, 4 (1)
  • [22] Vortex solitons in fractional nonlinear Schrodinger equation with the cubic-quintic nonlinearity
    Li, Pengfei
    Malomed, Boris A.
    Mihalache, Dumitru
    CHAOS SOLITONS & FRACTALS, 2020, 137
  • [23] (2+1)-Dimensional Analytical Solutions of the Combining Cubic-Quintic Nonlinear Schrodinger Equation
    Guo Ai-Lin
    Lin Ji
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2012, 57 (04) : 523 - 529
  • [24] Nonautonomous Solitons in the(3+1)-Dimensional Inhomogeneous Cubic-Quintic Nonlinear Medium
    刘翠云
    戴朝卿
    Communications in Theoretical Physics, 2012, 57 (04) : 568 - 574
  • [25] Nonautonomous Solitons in the (3+1)-Dimensional Inhomogeneous Cubic-Quintic Nonlinear Medium
    Liu Cui-Yun
    Dai Chao-Qing
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2012, 57 (04) : 568 - 574
  • [26] Search for 2-D Solitons in Gross-Pitaevskii Equation
    Laponin V.S.
    Savenkova N.P.
    Computational Mathematics and Modeling, 2014, 25 (1) : 1 - 8
  • [27] Exact Solutions of the Two-Dimensional Cubic-Quintic Nonlinear Schrodinger Equation with Spatially Modulated Nonlinearities
    Song Xiang
    Li Hua-Mei
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2013, 59 (03) : 290 - 294
  • [28] Stabilization of vortex solitons by combining competing cubic-quintic nonlinearities with a finite degree of nonlocality
    Shen, Ming
    Zhao, Hongwei
    Li, Bailing
    Shi, Jielong
    Wang, Qi
    Lee, Ray-Kuang
    PHYSICAL REVIEW A, 2014, 89 (02):
  • [29] On the Existence of Bright Solitons in Cubic-Quintic Nonlinear Schrodinger Equation with Inhomogeneous Nonlinearity
    Belmonte-Beitia, Juan
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2008, 2008
  • [30] Scalar and vector multipole and vortex solitons in the spatially modulated cubic-quintic nonlinear media
    Li, Ji-tao
    Zhu, Yu
    Han, Jin-zhong
    Qin, Wei
    Dai, Chao-qing
    Wang, Shao-hui
    NONLINEAR DYNAMICS, 2018, 91 (02) : 757 - 765