Stable vortex solitons of (2+1)-dimensional cubic-quintic Gross-Pitaevskii equation with spatially inhomogeneous nonlinearities

被引:10
|
作者
Song, Xiang [1 ]
Li, Hua-Mei [1 ]
机构
[1] Zhejiang Normal Univ, Dept Phys, Jinhua 321004, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Vortex soliton; Cubic-quintic Gross-Pitaevskii equation; Anharmonic potential; Harmonic potential; BOSE-EINSTEIN CONDENSATE;
D O I
10.1016/j.physleta.2013.01.018
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Applying the similarity transformation, two classes of vortex solitons are constructed in (2 + 1)-dimensional cubic-quintic Gross-Pitaevskii equation with spatially inhomogeneous nonlinearities, including the exact ones in the anharmonic potential and numerical ones in the harmonic potential. The properties of vortex solitons which are defined by the radial quantum number n and topological charge S are studied. The linear stability analysis and numerical simulation are used to verify the stability of these vortex solitons. The results show that stable vortex solitons exist for high radial quantum number and topological charge, within some region of values of chemical potential mu. (c) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:714 / 717
页数:4
相关论文
共 50 条
  • [1] Solitons in multi-body interactions for a fully modulated cubic-quintic Gross-Pitaevskii equation
    Zakeri, Gholam-Ali
    Yomba, Emmanuel
    APPLIED MATHEMATICAL MODELLING, 2018, 56 : 1 - 14
  • [2] Analytical non-autonomous wave solitons for the dispersive cubic-quintic Gross-Pitaevskii equation and the interactions
    Yu, Fajun
    Li, Li
    PHYSICS LETTERS A, 2015, 379 (20-21) : 1314 - 1320
  • [3] Modulational instability for a cubic-quintic model of coupled Gross-Pitaevskii equations with residual nonlinearities
    Mboumba, Maik Delon
    Kamsap, Marius Romuald
    Moubissi, Alain Brice
    Ekogo, Thierry Blanchard
    Kofane, Timoleon Crepin
    PHYSICA SCRIPTA, 2024, 99 (12)
  • [4] Spatiotemporal self-similar solutions for the nonautonomous (3+1)-dimensional cubic-quintic Gross-Pitaevskii equation
    Dai Chao-Qing
    Chen Rui-Pin
    Wang Yue-Yue
    CHINESE PHYSICS B, 2012, 21 (03)
  • [5] Spatiotemporal self-similar solutions for the nonautonomous (3+1)-dimensional cubic-quintic Gross-Pitaevskii equation
    戴朝卿
    陈瑞品
    王悦悦
    Chinese Physics B, 2012, (03) : 145 - 150
  • [6] One-dimensional cubic-quintic Gross-Pitaevskii equation for Bose-Einstein condensates in a trap potential
    Carlos Trallero-Giner
    Rolci Cipolatti
    Timothy C. H. Liew
    The European Physical Journal D, 2013, 67
  • [7] Spatial similaritons in the (2+1)-dimensional inhomogeneous cubic-quintic nonlinear Schrodinger equation
    Dai, Chao-Qing
    Ye, Jian-Feng
    Chen, Xin-Fen
    OPTICS COMMUNICATIONS, 2012, 285 (19) : 3988 - 3994
  • [8] One-dimensional cubic-quintic Gross-Pitaevskii equation for Bose-Einstein condensates in a trap potential
    Trallero-Giner, Carlos
    Cipolatti, Rolci
    Liew, Timothy C. H.
    EUROPEAN PHYSICAL JOURNAL D, 2013, 67 (07):
  • [9] Lattice Boltzmann model for the interaction of (2+1)-dimensional solitons in generalized Gross-Pitaevskii equation
    Wang, Huimin
    Yan, Guangwu
    APPLIED MATHEMATICAL MODELLING, 2016, 40 (7-8) : 5139 - 5152
  • [10] Bose-Einstein condensation under the cubic-quintic Gross-Pitaevskii equation in radial domains
    Luckins, Ellen K.
    Van Corder, Robert A.
    ANNALS OF PHYSICS, 2018, 388 : 206 - 234