An analogue of the Erdos-Gallai theorem for random graphs

被引:1
|
作者
Balogh, Jozsef [1 ,2 ]
Dudek, Andrzej [3 ]
Li, Lina [4 ]
机构
[1] Univ Illinois, Dept Math Sci, Urbana, IL 61801 USA
[2] Moscow Inst Phys & Technol, Moscow, Russia
[3] Western Michigan Univ, Dept Math, Kalamazoo, MI 49008 USA
[4] Univ Illinois, Dept Math, Urbana, IL USA
关键词
TURANS EXTREMAL PROBLEM; SIZE RAMSEY NUMBER; SUBGRAPHS; CYCLES;
D O I
10.1016/j.ejc.2020.103200
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recently, variants of many classical extremal theorems have been proved in the random environment. We, complementing existing results, extend the Erdos-Gallai Theorem in random graphs. In particular, we determine, up to a constant factor, the maximum number of edges in a P-n-free subgraph of G(N, p), practically for all values of N, n and p. Our work is also motivated by the recent progress on the size-Ramsey number of paths. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] A stability version for a theorem of Erdos on nonhamiltonian graphs
    Furedi, Zoltan
    Kostochka, Alexandr
    Luo, Ruth
    DISCRETE MATHEMATICS, 2017, 340 (11) : 2688 - 2690
  • [32] Gallai graphs and anti-Gallai graphs
    Discrete Math, 1-3 (179-189):
  • [33] A continuous analogue of Erdos' k-Sperner theorem
    Mitsis, Themis
    Pelekis, Christos
    Vlasak, Vaclav
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 484 (02)
  • [34] An analogue of the Erdos-Stone theorem for finite geometries
    Geelen, Jim
    Nelson, Peter
    COMBINATORICA, 2015, 35 (02) : 209 - 214
  • [35] A Gallai's Theorem type result for the edge stability of graphs
    Kemnitz, Arnfried
    Marangio, Massimiliano
    DISCRETE MATHEMATICS LETTERS, 2023, 12 : 118 - 121
  • [36] An Erds-Gallai type theorem for vertex colored graphs
    Salia, Nika
    Tompkins, Casey
    Zamora, Oscar
    GRAPHS AND COMBINATORICS, 2019, 35 (03) : 689 - 694
  • [37] The Erdos-Renyi theory of random graphs
    Bollobás, B
    PAUL ERDOS AND HIS MATHEMATICS II, 2002, 11 : 79 - 134
  • [38] Modularity of Erdos-Renyi random graphs
    McDiarmid, Colin
    Skerman, Fiona
    RANDOM STRUCTURES & ALGORITHMS, 2020, 57 (01) : 211 - 243
  • [39] Treewidth of Erdos-Renyi random graphs, random intersection graphs, and scale-free random graphs
    Gao, Yong
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (4-5) : 566 - 578
  • [40] A De Bruijn-Erdos theorem for chordal graphs
    Beaudou, Laurent
    Bondy, Adrian
    Chen, Xiaomin
    Chiniforooshan, Ehsan
    Chudnovsky, Maria
    Chvatal, Vasek
    Fraiman, Nicolas
    Zwols, Yori
    ELECTRONIC JOURNAL OF COMBINATORICS, 2015, 22 (01):