An analogue of the Erdos-Stone theorem for finite geometries

被引:8
|
作者
Geelen, Jim [1 ]
Nelson, Peter [2 ]
机构
[1] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
[2] Victoria Univ, Sch Math Stat & Operat Res, Wellington, New Zealand
关键词
HALES-JEWETT THEOREM;
D O I
10.1007/s00493-014-2952-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a set G of points in PG(m-1,q), let ex(q) (G;n) denote the maximum size of a collection of points in PG(n-1,q) not containing a copy of G, up to projective equivalence. We show that lim(n ->infinity) exq(G;n)/vertical bar PG(n - 1,q)vertical bar = 1 - q(1-c,) where c is the smallest integer such that there is a rank-(m-c) flat in PG(m - 1,q) that is disjoint from G. The result is an elementary application of the density version of the Hales-Jewett Theorem.
引用
收藏
页码:209 / 214
页数:6
相关论文
共 50 条