An analogue of the Erdos-Gallai theorem for random graphs

被引:1
|
作者
Balogh, Jozsef [1 ,2 ]
Dudek, Andrzej [3 ]
Li, Lina [4 ]
机构
[1] Univ Illinois, Dept Math Sci, Urbana, IL 61801 USA
[2] Moscow Inst Phys & Technol, Moscow, Russia
[3] Western Michigan Univ, Dept Math, Kalamazoo, MI 49008 USA
[4] Univ Illinois, Dept Math, Urbana, IL USA
关键词
TURANS EXTREMAL PROBLEM; SIZE RAMSEY NUMBER; SUBGRAPHS; CYCLES;
D O I
10.1016/j.ejc.2020.103200
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recently, variants of many classical extremal theorems have been proved in the random environment. We, complementing existing results, extend the Erdos-Gallai Theorem in random graphs. In particular, we determine, up to a constant factor, the maximum number of edges in a P-n-free subgraph of G(N, p), practically for all values of N, n and p. Our work is also motivated by the recent progress on the size-Ramsey number of paths. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] A GENERALIZATION OF AN ERDOS-GALLAI THEOREM
    BERGE, C
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1969, 268 (19): : 1118 - &
  • [2] An Erdos-Gallai Theorem for Matroids
    McGuinness, Sean
    ANNALS OF COMBINATORICS, 2012, 16 (01) : 107 - 119
  • [3] Hypergraph extensions of the Erdos-Gallai Theorem
    Gyori, Ervin
    Katona, Gyula Y.
    Lemons, Nathan
    EUROPEAN JOURNAL OF COMBINATORICS, 2016, 58 : 238 - 246
  • [4] The Erdos-Gallai theorem modulo k
    Brualdi, Richard A.
    Meyer, Seth A.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2020, 76 : 339 - 345
  • [5] Localized version of hypergraph Erdos-Gallai Theorem
    Zhao, Kai
    Zhang, Xiao-Dong
    DISCRETE MATHEMATICS, 2025, 348 (01)
  • [6] Extensions of the Erdos-Gallai theorem and Luo's theorem
    Ning, Bo
    Peng, Xing
    COMBINATORICS PROBABILITY & COMPUTING, 2020, 29 (01): : 128 - 136
  • [7] Quasiplanar Graphs, String Graphs, and the Erdos-Gallai Problem
    Fox, Jacob
    Pach, Janos
    Suk, Andrew
    GRAPH DRAWING AND NETWORK VISUALIZATION, GD 2022, 2023, 13764 : 219 - 231
  • [8] Quasiplanar graphs, string graphs, and the Erdos-Gallai problem
    Fox, Jacob
    Pach, Janos
    Suk, Andrew
    EUROPEAN JOURNAL OF COMBINATORICS, 2024, 119
  • [9] An Erdos-Gallai type theorem for uniform hypergraphs
    Davoodi, Akbar
    Gyori, Ervin
    Methuku, Abhishek
    Tompkins, Casey
    EUROPEAN JOURNAL OF COMBINATORICS, 2018, 69 : 159 - 162
  • [10] Stability in the Erdos-Gallai Theorem on cycles and paths, II
    Furedi, Zoltan
    Kostochka, Alexandr
    Luo, Ruth
    Verstraete, Jacques
    DISCRETE MATHEMATICS, 2018, 341 (05) : 1253 - 1263