On the Smith normal form of skew E-W matrices

被引:1
|
作者
Armario, Jose Andres [1 ]
机构
[1] Univ Seville, Dept Matemat Aplicada 1, Seville, Spain
来源
LINEAR & MULTILINEAR ALGEBRA | 2017年 / 65卷 / 02期
关键词
E-W matrices; tournaments; Smith normal form; D-OPTIMAL DESIGNS; HADAMARD-MATRICES;
D O I
10.1080/03081087.2016.1186148
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let t be a positive integer. An E-W matrix is a square (-1, 1)-matrix of order 4t + 2 satisfying that the absolute value of its determinant attains Ehlich-Wojtas' bound. We show that the Smith normal form of every skew E-W matrix follows this pattern diag[1, 2, ... , 2, m(2t+2),m(2t+3), ... , m(4t+2)], where m(2t+3) > 2 and the product m(1) ... m(k) divides 2(t)(2[k/2])([k/2]), for 1 <= k <= 4t.
引用
收藏
页码:375 / 380
页数:6
相关论文
共 50 条