On the Smith normal form of skew E-W matrices

被引:1
|
作者
Armario, Jose Andres [1 ]
机构
[1] Univ Seville, Dept Matemat Aplicada 1, Seville, Spain
来源
LINEAR & MULTILINEAR ALGEBRA | 2017年 / 65卷 / 02期
关键词
E-W matrices; tournaments; Smith normal form; D-OPTIMAL DESIGNS; HADAMARD-MATRICES;
D O I
10.1080/03081087.2016.1186148
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let t be a positive integer. An E-W matrix is a square (-1, 1)-matrix of order 4t + 2 satisfying that the absolute value of its determinant attains Ehlich-Wojtas' bound. We show that the Smith normal form of every skew E-W matrix follows this pattern diag[1, 2, ... , 2, m(2t+2),m(2t+3), ... , m(4t+2)], where m(2t+3) > 2 and the product m(1) ... m(k) divides 2(t)(2[k/2])([k/2]), for 1 <= k <= 4t.
引用
收藏
页码:375 / 380
页数:6
相关论文
共 50 条
  • [1] On Skew E-W Matrices
    Andres Armario, Jose
    Dolores Frau, Maria
    JOURNAL OF COMBINATORIAL DESIGNS, 2016, 24 (10) : 461 - 472
  • [2] Skew-Hadamard Matrices and the Smith Normal Form
    Michael T.S.
    Wallis W.D.
    Designs, Codes and Cryptography, 1998, 13 (2) : 173 - 176
  • [3] A shorter proof of the Smith normal form of skew-Hadamard matrices and their designs
    Hacioglu, Ilhan
    Keman, Aytul
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2014, 43 (02): : 227 - 230
  • [4] On the Smith normal form of walk matrices
    Wang, Wei
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 612 : 30 - 41
  • [5] Smith Normal Form and acyclic matrices
    Kim, In-Jae
    Shader, Bryan L.
    Journal of Algebraic Combinatorics, 2009, 29 (01): : 63 - 80
  • [6] Smith Normal Form and acyclic matrices
    Kim, In-Jae
    Shader, Bryan L.
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2009, 29 (01) : 63 - 80
  • [7] Smith Normal Form and acyclic matrices
    In-Jae Kim
    Bryan L. Shader
    Journal of Algebraic Combinatorics, 2009, 29 : 63 - 80
  • [8] On the Smith normal form of walk matrices
    Wang, Wei
    Linear Algebra and Its Applications, 2021, 612 : 30 - 41
  • [9] Smith normal form of some distance matrices
    Bapat, Ravindra B.
    Karimi, Masoud
    LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (06): : 1117 - 1130
  • [10] Reduction of Smith normal form transformation matrices
    Jäger, G
    COMPUTING, 2005, 74 (04) : 377 - 388