On the Smith normal form of walk matrices

被引:0
|
作者
Wang, Wei [1 ]
机构
[1] School of Mathematics, Physics and Finance, Anhui Polytechnic University, Wuhu,241000, China
基金
中国国家自然科学基金;
关键词
Adjacency matrices - Invariant factors - Smith normal form;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a graph with n vertices. The walk matrix W(G) of G is the matrix [e,Ae,…,An−1e], where A is the adjacency matrix of G and e is the all-one vector. Let W be a walk matrix of order n. We show that at most [Formula presented] invariant factors of W are congruent to 2 modulo 4. As a consequence, it is proved that, for any n×n walk matrix W with 2-rank r, the determinant of W is always a multiple of [Formula presented]. Moreover, if [Formula presented] is odd and square-free, then the Smith normal form of W can be recovered uniquely from the triple (n,r,det⁡W). © 2020 Elsevier Inc.
引用
收藏
页码:30 / 41
相关论文
共 50 条
  • [1] On the Smith normal form of walk matrices
    Wang, Wei
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 612 : 30 - 41
  • [2] Smith Normal Form and acyclic matrices
    Kim, In-Jae
    Shader, Bryan L.
    Journal of Algebraic Combinatorics, 2009, 29 (01): : 63 - 80
  • [3] Smith Normal Form and acyclic matrices
    Kim, In-Jae
    Shader, Bryan L.
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2009, 29 (01) : 63 - 80
  • [4] Smith Normal Form and acyclic matrices
    In-Jae Kim
    Bryan L. Shader
    Journal of Algebraic Combinatorics, 2009, 29 : 63 - 80
  • [5] Smith normal form of some distance matrices
    Bapat, Ravindra B.
    Karimi, Masoud
    LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (06): : 1117 - 1130
  • [6] Reduction of Smith normal form transformation matrices
    Jäger, G
    COMPUTING, 2005, 74 (04) : 377 - 388
  • [7] On the computation of the Smith normal form of compound matrices
    M. Mitrouli
    C. Koukouvinos
    Numerical Algorithms, 1997, 16 : 95 - 105
  • [8] The Smith normal form of product distance matrices
    Bapat, R. B.
    Sivasubramanian, Sivaramakrishnan
    SPECIAL MATRICES, 2016, 4 (01): : 46 - 55
  • [9] Reduction of Smith Normal Form Transformation Matrices
    G. Jäger
    Computing, 2005, 74 : 377 - 388
  • [10] On the computation of the Smith normal form of compound matrices
    Mitrouli, M
    Koukouvinos, C
    NUMERICAL ALGORITHMS, 1997, 16 (02) : 95 - 105